• Title/Summary/Keyword: Silicon nitride ceramics

Search Result 119, Processing Time 0.02 seconds

Application of Mechanochemical Processing for Preparation of Si3N4-based Powder Mixtures

  • Sopicka-Lizer, Malgorzata;Pawlik, Tomasz
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.4
    • /
    • pp.337-341
    • /
    • 2012
  • Mechanochemical processing (MCP) involves several high-energy collisions of powder particles with the milling media and results in the increased reactivity/sinterability of powder. The present paper shows results of mechanochemical processing (MCP) of silicon nitride powder mixture with the relevant sintering additives. The effects of MCP were studied by structural changes of powder particles themselves as well as by the resulting sintering/densification ability. It has been found that MCP significantly enhances reactivity and sinterability of the resultant material: silicon nitride ceramics could be pressureless sintered at $1500^{\circ}C$. Nevertheless, a degree of a silicon nitride crystal lattice and powder particle destruction (amorphization) as detected by XRD studies, is limited by the specific threshold. If that value is crossed then particle's surface damage effects are prevailing thus severe evaporation overdominates mass transport at elevated temperature. It is discussed that the cross-solid interaction between particles of various chemical composition, triggered by many different factors during mechanochemical processing, including a short-range diffusion in silicon nitride particles after collisions with other types of particles plays more important role in enhanced reactivity of tested compositions than amorphization of the crystal lattice itself. Controlled deagglomeration of $Si_3N_4$ particles during the course of high-energy milling was also considered.

Characterization of Subsurface Damage in Si3N4 Ceramics with Static and Dynamic Indentation

  • Kim, Jong-Ho;Kim, Young-Gu;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.8 s.279
    • /
    • pp.537-541
    • /
    • 2005
  • Silicon nitride is one of the most successful engineering ceramics, owing to a favorable combination of properties, including high strength, high hardness, low thermal expansion coefficient, and high fracture toughness. However, the impact damage behavior of $Si_3N_4$ ceramics has not been widely characterized. In this study, sphere and explosive indentations were used to characterize the static and dynamic damage behavior of $Si_3N_4$ ceramics with different microstructures. Three grades of $Si_3N_4$ with different grain size and shape, fine-equiaxed, medium, and coarse-elongated, were prepared. In order to observe the subsurface damaged zone, a bonded-interface technique was adopted. Subsurface damage evolution of the specimens was then characterized extensively using optical and electron microscopy. It was found that the damage response depends strongly on the microstructure of the ceramics, particularly on the glassy grain boundary phase. In the case of static indentation, examination of subsurface damage revealed competition between brittle and ductile damage modes. In contrast to static indentation results, dynamic indentation induces a massive subsurface yield zone that contains severe micro-failures. In this study, it is suggested that the weak glassy grain boundary phase plays an important role in the resistance to dynamic fracture.

The Effect of Si3N4 Addition on Nitriding and Post-Sintering Behavior of Silicon Powder Mixtures

  • Park, Young-Jo;Ko, Jae-Woong;Lee, Jae-Wook;Kim, Hai-Doo
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.4
    • /
    • pp.363-368
    • /
    • 2012
  • Nitriding and post-sintering behavior of powder mixture compacts were investigated. As mixture compacts are different from simple Si compacts, the fabrication of a sintered body with a mixture composition has engineering implications. In this research, in specimens without a pore former, the extent of nitridation increased with $Si_3N_4$ content, while the highest extent of nitridation was measured in $Si_3N_4$-free composition when a pore former was added. Large pores made from the thermal decomposition of the pore former collapsed, and they were filled with a reaction product, reaction-bonded silicon nitride (RBSN) in the $Si_3N_4$-free specimen. On the other hand, pores from the decomposed pore former were retained in the $Si_3N_4$-added specimen. Introduction of small $Si_3N_4$ particles ($d_{50}=0.3{\mu}m$) into a powder compact consisting of large silicon particles ($d_{50}=7{\mu}m$) promoted close packing in the green body compact, and resulted in a stable strut structure after decomposition of the pore former. The local packing density of the strut structure depends on silicon to $Si_3N_4$ size ratio and affected both nitriding reaction kinetics and microstructure in the post-sintered body.

Effect of Sintering Additives on the Oxidation Behavior of Hot Pressed Silicon Nitride (가압소결한 질화규소의 산화거동에 미치는 소결 첨가제의 영향)

  • 최헌진;김영욱;이준근
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.7
    • /
    • pp.777-783
    • /
    • 1994
  • Oxidation behavior of hot-pressed silicon nitride ceramics with various sintering additives has been investigated. The weight gain of each specimens has shown in the range of 0.11 mg/$\textrm{cm}^2$ ~3.4 mg/$\textrm{cm}^2$ at 140$0^{\circ}C$ for 192 h and eleven compositions have shown good oxidation resistance with the weight gain below 0.5 mg/$\textrm{cm}^2$. The oxidation rate has been shown to obey the parabolic rate law and the oxidized surface has consisted of $\alpha$-cristobalite and M2Si2O7 or MSiO3 (M=rare earth or transition metals) phase. The oxidation rate of each specimens has related to the eutectic temperature between additive oxide and SiO2, and ionic radius of additive oxides, respectively. From the above results, it could be concluded that the oxidation behavior of hot pressed silicon nitride is dominated by the high temperature properties of grain boundary glassy phase and the high temperature properties of grain boundary glassy phase are affected by the ionic radius of additive oxides.

  • PDF

Optical, Mechanical and Tribological Properties of $Y_2O_3$ $Er_2O_3$ and $Nd_2O_3$ Doped Polycrystalline Silicon Nitride Ceramics

  • Joshi, Bhupendra;Lee, Su-Wan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.51.1-51.1
    • /
    • 2010
  • $Y_2O_3$ $Er_2O_3$ and $Nd_2O_3$ doped polycrystalline silicon nitride were prepared by hot pressed sintering at $1850^{\circ}C$ and their optical transmittance were investigated in visible and in infrared region. Mechanical and tribological properties were also investigated. Grain growth in silicon nitride was reduced with addition of $Y_2O_3$ and $Nd_2O_3$. 1 wt.% of each rare earth metal were sintered with 3 wt.% MgO, 9wt.% AlN and 87 wt.% of ${\alpha}-Si_3N_4$. Adding these rare earth metal oxides shows good mechanical properties as high strength and toughness and also shows low friction coefficient.

  • PDF

Fabrication of β-SiAlONs by a Reaction-Bonding Process Followed by Post-Sintering

  • Park, Young-Jo;Noh, Eun-Ah;Ko, Jae-Woong;Kim, Hai-Doo
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.5
    • /
    • pp.452-455
    • /
    • 2009
  • A cost-effective route to synthesize $\beta$-SiAlONs from Si mixtures by reaction bonding followed by post-sintering was investigated. Three different z values, 0.45, 0.92 and 1.87, in $Si_{6-z}Al_zO_zN_{8-z}$ without excess liquid phase were selected to elucidate the mechanism of SiAlON formation and densification. For RBSN (reaction-bonded silicon nitride) specimens prior to post-sintering, nitridation rates of more than 90% were achieved by multistep heating to $1400^{\circ}C$ in flowing 5%$H_2$/95%$N_2$; residual Si was not detected by XRD analysis. An increase in density was acquired with increasing z values in post-sintered specimens, and this tendency was explained by the presence of higher amounts of transient liquid phase at larger z values. Measured z values from the synthesized $\beta$-SiAlONs were similar to the values calculated for the starting compositions. Slight deviations in z values between measurements and calculations were rationalized by a reasonable application of the characteristics of the nitriding and post-sintering processes.

Effect of Starting SiC Particle Size on Nitridation and Strength of Silicon Nitride-Bonded Silicon Carbide Ceramics (출발 SiC 입자 크기가 Si3N4-Bonded SiC 세라믹스의 질화율과 강도에 미치는 영향)

  • Choi, Young-Hoon;Kim, Young-Wook;Woo, Sang-Kuk;Han, In-Sub
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.157-162
    • /
    • 2010
  • Effect of starting SiC particle size on nitridation rate and flexural strength of $Si_3N_4$-bonded-SiC (SNBSC) ceramics was investigated by using SiC particles of different size (${\sim}200\;{\mu}m$, ${\sim}100\;{\mu}m$ and ${\sim}45\;{\mu}m$). The specimen prepared from smaller SiC particles resulted in higher nitridation rate after nitridation at $1450^{\circ}C$, owing to the lower packing density in green body. The flexural strength showed maxima after 1-h nitridation for all specimens and then decreased with prolonged nitridation because of local densification-induced pore coarsening. The specimen prepared from smaller SiC particles showed better flexural strength because of smaller pore size and partly higher nitridation rate in the specimen. A maximal flexural strength of 29 MPa was obtained in the specimen with a density of $2.04\;g{\cdot}cm^3$, which was prepared from $45\;{\mu}m$-SiC particles.

Precise Property Control in Silicon Nitride Ceramics by $\alpha$/$\beta$ Phase Ratio Control

  • Kawaoka, H.;Kusunose, T.;Choa, Y-H.;Sekino, T.;Niihara, K.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 2000.06a
    • /
    • pp.59-64
    • /
    • 2000
  • Silicon nitride ceramics with various α/β phase ratio were fabricated by controlling sintering conditions of PECS process. Mechanical properties varied systematically with α/β ratio. Young's modulus and hardness increased with α-Si₃N₄ volume fraction, and fracture strength and toughness increased with β-Si₃N₄ content.

  • PDF

Hot Pressing of the Silicon Nitride Based Ceramics and Their Mechanical Behavior

  • Park, D.S.;Lee, S.Y.;Kim, H.D.;Park, W.S.;D.S. Lim;B.D. Han
    • The Korean Journal of Ceramics
    • /
    • v.1 no.1
    • /
    • pp.45-54
    • /
    • 1995
  • Four kinds of silicon nitride based ceramic materials have been hot pressed. Effect of the sintering additives on the phase transformation, microstructural development and mechanical properties was investigated. While sintering under the same condition a big difference among the microstructures of the specimens, they appeared alike if sintered to have a similiar $\alpha$-$\beta$ phase ratio. The specimen of the stoichiometric $\alpha$-$\beta$ sialon composition showed very limited amount of the intergranular glassy phase and a significant degree of the residual stress. It exhibited almost no strength degradation up to $1300^{\circ}C$, and the strength of the specimen degraded more as its composition deviated from the stoichiometry.

  • PDF