• Title/Summary/Keyword: Silicon carbide coating

Search Result 59, Processing Time 0.028 seconds

Mechanical Properties of Chemical-Vapor-Deposited Silicon Carbide using a Nanoindentation Technique

  • Kim, Jong-Ho;Lee, Hyeon-Keun;Park, Ji-Yeon;Kim, Weon-Ju;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.9
    • /
    • pp.518-523
    • /
    • 2008
  • The mechanical properties of silicon carbide deposited by chemical vapor deposition process onto a graphite substrate are studied using nanoindentation techniques. The silicon carbide coating was fabricated in a chemical vapor deposition process with different microstructures and thicknesses. A nanoindentation technique is preferred because it provides a reliable means to measure the mechanical properties with continuous load-displacement recording. Thus, a detailed nanoindentation study of silicon carbide coatings on graphite structures was conducted using a specialized specimen preparation technique. The mechanical properties of the modulus, hardness and toughness were characterized. Silicon carbide deposited at $1300^{\circ}C$ has the following values: E=316 GPa, H=29 GPa, and $K_c$=9.8 MPa $m^{1/2}$; additionally, silicon carbide deposited at $1350^{\circ}C$ shows E=283 GPa, H=23 GPa, and $K_c$=6.1 MPa $m^{1/2}$. The mechanical properties of two grades of SiC coating with different microstructures and thicknesses are discussed.

Preparation of Silicon Carbide Ceramic Thick Films by Liquid Process (액상공정을 이용한 탄화규소 세라믹 후막의 제조)

  • Kim, Haeng-Man;Kim, Jun-Su;Lee, Hong-Rim;Ahn, Young-Cheol;Yun, Jon-Do
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.1
    • /
    • pp.95-99
    • /
    • 2012
  • Silicon carbide ceramics are used for oxidation resistive coating films due to their excellent properties like high strength, good oxidation resistance, and good abrasion resistance, but they have poor formability and are prepared by vapor process which is complicated, costly, and sometimes hazardous. In this study, preparation of silicon carbide coating film by liquid process using polymer precursor was attempted. Coating film was prepared by dip coating on substrate followed by heat treatment in argon at $1200^{\circ}C$. By changing the dipping speed, the thickness was controlled. The effects of plasticizer, binder, or fiber addition on suppression of crack generation in the polymer and ceramic films were examined. It was found that fiber additives was effective for suppressing crack generation.

A Study on Ultra Precision Grinding of Silicon Carbide Molding Core for High Pixel Camera Phone Module (고화소 카메라폰 모듈을 위한 Glass 렌즈 성형용 Silicon Carbide 코어의 초정밀 가공에 관한 연구)

  • Kim, Hyun-Uk;Kim, Jeong-Ho;Ohmori, Hitoshi;Kwak, Tae-Soo;Jeong, Shang-Hwa
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.7
    • /
    • pp.117-122
    • /
    • 2010
  • Recently, aspheric glass lens molding core is fabricated with tungsten carbide(WC). If molding core is fabricated with silicon carbide(SiC), SiC coating process, which must be carried out before the Diamond-Like Carbon(DLC) coating can be eliminated and thus, manufacturing time and cost can be reduced. Diamond Like Carbon(DLC) is being researched in various fields because of its high hardness, high elasticity, high durability, and chemical stability and is used extensively in several industrial fields. Especially, the DLC coating of the molding core surface used in the fabrication of a glass lens is an important technical field, which affects the improvement of the demolding performance between the lens and molding core during the molding process and the molding core lifetime. Because SiC is a material of high hardness and high brittleness, it can crack or chip during grinding. It is, however, widely used in many fields because of its superior mechanical properties. In this paper, the grinding condition for silicon carbide(SiC) was developed under the grinding condition of tungsten carbide. A silicon carbide molding core was fabricated under this grinding condition. The measurement results of the SiC molding core were as follows: PV of 0.155 ${\mu}m$(apheric surface) and 0.094 ${\mu}m$(plane surface), Ra of 5.3 nm(aspheric surface) and 5.5 nm(plane surface).

Silicon Carbide Coating by Thermal Decomposition of tetramethylsilane

  • YOON Kyung-Hoon
    • Proceedings of the Korean Ceranic Society Conference
    • /
    • 1986.12a
    • /
    • pp.211-225
    • /
    • 1986
  • Silicon carbide coating has been studied using a graphite substrate, a mixture of tetramethylsilane and hydrogen or argon at deposition temperature (T) of 950 to $1200^{\circ}C$ total pressure of 20 to 50 torr and carrier gas flow rate of 0 to 901/h. Deposition kinetic study has shown that a transition, from a surface reaction limited process to a diffusion limited one, takes place near $1100^{\circ}C$. Deposition rate depends directly upon the experimental parameters. The influence of the main process parameters is also discussed to relate the physiochemical properties of the coating to the deposition conditions.

  • PDF

Fabrication of Carbon Fiber Reinforced Reaction Bonded SiC Composite Fabricated by a Molten Si Infiltration Method; I. The Effect of Carbon Fiber Coating Process (용융 Si 침윤법에 의해 제조된 반응소결 탄소 섬유강화 탄화규소 복합체 제조; I. 탄소 섬유 코팅 방법에 따른 영향)

  • Yun, Sung-Ho;Tan, Phung Nhut;Cho, Gyung-Sun;Cheong, Hun;Kim, Young-Do;Park, Sang-Whang
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.9
    • /
    • pp.531-536
    • /
    • 2008
  • Reaction bonded silicon carbide (RBSC) composite for heat-exchanger was fabricated by molten Si infiltration method. For enforcing fracture toughness to reaction bonded silicon carbide composite, the surface of carbon fiber has coating layer by SiC or pyro-carbon. For SiC layer coating, CVD method was used. And for carbon layer coating, the phenol resin was used. In the case of carbon layer coating, fracture toughness and fracture strength were enhancing to 4.4 $MPa{\cdot}m^{1/2}$ and 279 MPa.

Thermal Analysis of Silicon Carbide Coating on a Nickel based Superalloy Substrate and Thickness Measurement of Top Layers by Lock-in Infrared Thermography

  • Ranjit, Shrestha;Kim, Wontae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.37 no.2
    • /
    • pp.75-83
    • /
    • 2017
  • In this paper, we investigate the capacity of the lock-in infrared thermography technique for the evaluation of non-uniform top layers of a silicon carbide coating with a nickel based superalloy sample. The method utilized a multilayer heat transfer model to analyze the surface temperature response. The modelling of the sample was done in ANSYS. The sample consists of three layers, namely, the metal substrate, bond coat and top coat. A sinusoidal heating at different excitation frequencies was imposed upon the top layer of the sample according to the experimental procedures. The thermal response of the excited surface was recorded, and the phase angle image was computed by Fourier transform using the image processing software, MATLAB and Thermofit Pro. The correlation between the coating thickness and phase angle was established for each excitation frequency. The most appropriate excitation frequency was found to be 0.05 Hz. The method demonstrated potential in the evaluation of coating thickness and it was successfully applied to measure the non-uniform top layers ranging from 0.05 mm to 1 mm with an accuracy of 0.000002 mm to 0.045 mm.

Protective SiC Coating on Carbon Fibers by Low Pressure Chemical Vapor Deposition

  • Bae, Hyun Jeong;Kim, Baek Hyun;Kwon, Do-Kyun
    • Korean Journal of Materials Research
    • /
    • v.23 no.12
    • /
    • pp.702-707
    • /
    • 2013
  • High-quality ${\beta}$-silicon carbide (SiC) coatings are expected to prevent the oxidation degradation of carbon fibers in carbon fiber/silicon carbide (C/SiC) composites at high temperature. Uniform and dense ${\beta}$-SiC coatings were deposited on carbon fibers by low-pressure chemical vapor deposition (LP-CVD) using silane ($SiH_4$) and acetylene ($C_2H_2$) as source gases which were carried by hydrogen gas. SiC coating layers with nanometer scale microstructures were obtained by optimization of the processing parameters considering deposition mechanisms. The thickness and morphology of ${\beta}$-SiC coatings can be controlled by adjustment of the amount of source gas flow, the mean velocity of the gas flow, and deposition time. XRD and FE-SEM analyses showed that dense and crack-free ${\beta}$-SiC coating layers are crystallized in ${\beta}$-SiC structure with a thickness of around 2 micrometers depending on the processing parameters. The fine and dense microstructures with micrometer level thickness of the SiC coating layers are anticipated to effectively protect carbon fibers against the oxidation at high-temperatures.

Microstructure and Nano-hardness of SiC/C Multi-coated Layers on a Particulate Nuclear Fuel (입자 핵연료의 SiC/C 다층 도포층의 미세조직 및 극미세 경도 평가)

  • Choi, Young
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.6
    • /
    • pp.321-325
    • /
    • 2019
  • Triso-type coating layers of silicon carbide and graphite on UO2 paticulate nuclear fuel were prepared by using fluidized bed type chemical vapor deposition and self-propagating high temperature synthesis methods to make a coated nuclear fuel of a power plant for hydrogen mass-production. The source and carrier gases were the mixture of methyltrichlorosilane and propane, and inert argon. Chemical analysis and microstructure observation showed that the coated layers were inner graphite, middle silicon carbide and outer graphite. The elastic modulus and nano-hardness of the silicon carbide layer were 503 [GPa] and 36 [GPa], respectively.

Silicon Carbide Coating on Graphite and Isotropic C/C Composite by Chemical Vapour Reaction

  • Manocha, L.M.;Patel, Bharat;Manocha, S.
    • Carbon letters
    • /
    • v.8 no.2
    • /
    • pp.91-94
    • /
    • 2007
  • The application of Carbon and graphite based materials in unprotected environment is limited to a temperature of $450^{\circ}C$ or so because of their susceptibility to oxidation at this temperature and higher. To over come these obstacles a low cost chemical vapour reaction process (CVR) was developed to give crystalline and high purity SiC coating on graphite and isotropic C/C composite. CVR is most effective carbothermal reduction method for conversation of a few micron of carbon layer to SiC. In the CVR method, a sic conversation layer is formed by reaction between carbon and gaseous reagent silicon monoxide at high temperature. Characterization of SiC coating was carried out using SEM. The other properties studied were hardness density and conversion efficiency.

Friction and Wear Properties of Boron Carbide Coating under Various Relative Humidity

  • Pham Duc-Cuong;Ahn Hyo-Sok;Yoon Eui-Sung
    • KSTLE International Journal
    • /
    • v.6 no.2
    • /
    • pp.39-44
    • /
    • 2005
  • Friction and wear properties of the Boron carbide ($B_{4}C$) coating 100 nm thickness were studied under various relative humidity (RH). The boron carbide film was deposited on silicon substrate by DC magnetron sputtering method using $B_{4}C$ target with a mixture of Ar and methane ($CH_4$) as precursor gas. Friction tests were performed using a reciprocation type friction tester at ambient environment. Steel balls of 3 mm in diameter were used as counter-specimen. The results indicated that relative humidity strongly affected the tribological properties of boron carbide coating. Friction coefficient decreased from 0.42 to 0.09 as the relative humidity increased from $5\%$ to $85\%$. Confocal microscopy was used to observe worn surfaces of the coating and wear scars on steel balls after the tests. It showed that both the coating surface and the ball were significantly worn-out even though boron carbide is much harder than the steel. Moreover, at low humidity ($5\%$) the boron carbide showed poor wear resistance which resulted in the complete removal of coating layer, whereas at the medium and high humidity conditions, it was not. X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) analyses were performed to characterize the chemical composition of the worn surfaces. We suggest that tribochemical reactions occurred during sliding in moisture air to form boric acid on the worn surface of the coating. The boric acid and the tribochemcal layer that formed on steel ball resulted in low friction and wear of boron carbide coating.