• Title/Summary/Keyword: Silicon Single Crystal

Search Result 256, Processing Time 0.026 seconds

Magnetic field effects on melt convection during crystal growth

  • Kakimoto, Koichi;Ozoe, Hiroyuki
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.06a
    • /
    • pp.187-196
    • /
    • 1997
  • Oxygen transfer in silicon melts during crystal growth under vertical magnetic fields is investigated numeriaclly and experimentally. A three-dimensional numerical simulation, including melt convection and oxygen transport, is carried out to understand how oxygen transfers in the melt under magnetic fields. Oxygen concentrations in single silicon crystals grown from the melt under these magnetic fields are experimentally measured by using an infrared absoption technique. The rusults obtained are compared to results from a numerical simualtion. An anomalous increase is observed in the oxygen concentration of the grown crystals under a magnetic field of about 0/03 tesla. The cause of this anomaly is identified as Benard instability, since the temperature at the bottom of the crucible is higher than that at interface. When the temperature at the bottom is decreased, the Benard cell can be removed, and a monotonical decrease in the oxygen concentration in the single crystals can be observed.

  • PDF

Silicon melt motion in a Czochralski crystal puller (쵸크랄스키 단결정 장치에서의 실리콘유동)

  • 이재희;이원식
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.1
    • /
    • pp.27-40
    • /
    • 1997
  • The heat in Czochralski method is transfered by all transport mechanisms such as convection, conduction and radiation and convection is caused by the temperature difference in the molden pool, the rotations of crystal or crucible and the difference of surface tension. This study delvelops the simulation model of Czochralski growth by using the finite difference method with fixed grids combined with new latent heat treatment model. The radiative heat transfer occured in the surfce of the system is treated by calculating the view factors among surface elements. The model shows that the flow is turbulent, therefore, turbulent modeling must be used to simulate the transport phenomena in the real system applied to 8" Si single crystal growth process. The effects of a cusp magnetic field imposed on the Czochralski silicon melt are studied by numerical analysis. The cusp magnetic field reduces the natural and forced convection due to the rotation of crystal and crucible very effectively. It is shown that the oxygen concentration distribution on the melt/crystal interface is sensitively controlled by the change of the magnetic field intensity. This provides an interesting way to tune the desired O concentration in the crystal during the crystal growing.

  • PDF

RADIAL UNIFORMITY OF NEUTRON IRRADIATION IN SILICON INGOTS FOR NEUTRON TRANSMUTATION DOPING AT HANARO

  • KIM MYONG-SEOP;LEE CHOONG-SUNG;OH SOO-YOUL;HWANG SUNG-YUL;JUN BYUNG-JIN
    • Nuclear Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.93-98
    • /
    • 2006
  • The radial uniformity of neutron irradiation in silicon ingots for neutron transmutation doping (NTD) at HANARO is examined by both calculations and measurements. HANARO has two NTD holes named NTD1 and NTD2. We have been using the NTD2 hole for 5 in. NTD commercial service, and we intend to use two holes for 6 in. NTD. The objective of this study is to predict the radial uniformity of 6 in. NTD at the two holes. The radial neutron flux distributions inside single crystal and noncrystal silicon loaded at the NTD2 hole are calculated by the VENTURE code. For NTD1, the radial distributions of the reaction rate for a 6 in. NTD with a neutron screen are calculated by MCNP, and measured by gold wire activation. The results of the measurements are compared with those of the calculations. From the VENTURE calculation, it is confirmed that the neutron flux distribution in the single crystal silicon is much flatter than that in the non-crystal silicon. The non-uniformities of the measurements for radial neutron irradiation are slightly larger than those of the calculations. However, excluding local dips in the measurements, the overall trends of the distributions are similar. The radial resistivity gradient (RRG) for a 5 in. silicon ingot is estimated to be about $1.5\%$. For a 6 in. ingot, the RRG of a silicon ingot irradiated at HANARO is predicted to be about $2.1\%$. Also, from the experimental results, we expect that the RRG would not be larger than $4.4\%$.

The Effect of Pyrazine on TMAH:IPA Single-crystal Silicon Anisotropic Etching Properties

  • Gwiy-Sang Chung;Tae-Song Kim
    • Transactions on Electrical and Electronic Materials
    • /
    • v.2 no.2
    • /
    • pp.21-25
    • /
    • 2001
  • This paper presents the effect of pyrazine on tetramethylammonium hydroxide (TMAH):isopropyl alcohol (IPA) single-crystal silicon anisotropic etching properties. With the addition of IPA to TMAH solutions, etching characteristics are exhibited an improvement in flatness on the etching front and a reduction in undercutting, but the etch rate on (100) silicon is decreased. The (100) silicon etch rate is improved by the addition of pyrazine. An etch rate on (100) silicon of 0.8 ${\mu}{\textrm}{m}$/min, which is faster by 13% than a 20 wt.% solution of pure TMAH, is obtained using 20 wt.% TMAH: 0.5 g/100 ml pyrazine solutions, but the etch rate on (100) silicon is decreased when more pyrazine is added. With the addition of pyrazine to a 25 wt.% TMAH solution, variations in flatness on the etching front are not observed and the undercutting ratio is reduced by 30~50%. These results indicate that anisotropic etching technology using TMAH:IPA:pyrazine solutions provides a powerful and versatile method for realizing of microelectromechanical systems.

  • PDF

Formation of Silicon Nanoparticles Using Laser Pyrolysis (레이저 열분해법을 이용한 실리콘 나노입자 제조)

  • Park, Joo Hyung;Lee, Jae Hee;Song, Jinsoo;Lee, Jeong Chul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.105.1-105.1
    • /
    • 2011
  • To enhance the performance of photovoltaic a-Si:H solar cells with a hybrid-type light absorbing structure of single crystal silicon nanoparticles (Si NPs) in a-Si:H matrix, single crystal Si NPs were produced by laser pyrolysis. The Si NPs were synthesized by $SiH_4$ gas decomposition using a $CO_2$ laser. The properties of Si NPs were controlled by process parameters such as $CO_2$ laser power, reactive gas pressure, and $H_2/SiH_4$ gas flows. The crystalline properties and sizes of Si NPs were analyzed by High Resolution Transmission Electron Microscopy (HRTEM). The sizes of Si NPs were controllable in the range of 5-15 nm in diameter and the effects of process parameters of laser pyrolysis were systematically investigated.

  • PDF

Effect of Electrolytic Concentration on Frictional Behavior of Single Crystal Silicon (전해질 용액의 농도가 단결정 Si의 마찰거동에 미치는 영향)

  • 임대순
    • Tribology and Lubricants
    • /
    • v.7 no.2
    • /
    • pp.46-50
    • /
    • 1991
  • The Frictional behavior in single crystal (111) p-type silicon as influenced by electolytic solutions have been studied. Linear scratching by diamond indentor was carried out to show the variation of friction between silicon and diamond indentor immersed in electrolytic solutions. The results indicate that concentration of the solutions influence the fricational coefficient. In addition there is a correlation between measured zeta-potential and frictional coefficients. The zeta-potential in various concentrations was measured to estimate the variation of the Peierls energy. The proposed model predicts a minimum frictional coefficient near a concentration of $10^{-3}$ M/l NaOH in deionized water and explains the chemomechanical effect observed in this study.

Fabrication of Low cost, High Efficiency Single Crystal Silicon Solar Cells (저가.고효율 단결정 실리콘 태양전지의 제조)

  • Lee, Kyu-Chung;Kim, In-Sik;Nam, Hyo-Jin;Park, Chul
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.7
    • /
    • pp.102-109
    • /
    • 1994
  • Low cost high efficiency single crystal silicon solar cells for terrestrial applications have been fabricated by using inexpensive materials such as solar grade silicon wafer and pastes, and mass production processes such as screen printing and spray. Under 100 mW/cm$^2$ (AM 1.5) and $25^{\circ}C$ conditions conversion efficiency of 16.48% was obtained by anon fire-thru process and 15.55% by fire-thru process.

  • PDF

A Study on Chemical Vapor Deposition of Polycrystalline Silicon. (다결정 실리콘의 화학증착에 대한 연구)

  • So, Myoung-Gi
    • Journal of Industrial Technology
    • /
    • v.2
    • /
    • pp.13-19
    • /
    • 1982
  • Polycrystalline silicon layers have been deposited by a chemical vapor deposition technique using $SiCl_4$, $H_2$ gas mixture on single crystal silicon substrates. In this work, the effects of depostion temperature and total flow rate on the deposition rate of polycrystalline silicon are investigated. From the experimental results it was found that the formation reaction of polycrystalline silicon was limited by surface reaction and mass transfer controlled as the deposition temperature was increased. The morphology of polycrystalline silicon layer changed from a fine structure to a coarse one as the deposition temperature was increased.

  • PDF

A numerical study on the effects of the asymmetric cusp magnetic field in 8 inch silicon single crystal growth by Czochralski method (초크랄스키법에 의한 8인치 실리콘 단결정 성장시 비대칭 커스프자장의 영향에 관한 연구)

  • 이승철;정형태;윤종규
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.1
    • /
    • pp.1-10
    • /
    • 1996
  • A numerical study was conducted on the effects of the cusp magnetic field in 8" silicon single crystal grwoth by Czochralski method. For a damping effects simulation by magnetic field, low reynolds number ${\kappa} - {\varepsilon}$ model was adopted. Symmetrci cusp magnetic field has a effect of damping streamline crystal, is lowerd with the increasing cusp magnetic field intensity. The uniformity of the oxygen concentration was improved. The asymmetirc cusp magnetic field increased the oxygen concentration however, oxygen concentration distribution in the radial direction was remained uniform. Suitable combination of symmetric and asymmetric cusp magnetic fields could give uniform and low oxygen concentration in the axial direction.tion.

  • PDF

Single-panel simulation on liquid crystal on silicon

  • Liao, Engle;Chiu, Jack;Peng, James
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.939-942
    • /
    • 2004
  • In this study, we report simulation results of single-panel LCOS (liquid crystal on silicon). Reflective LCOS microdisplays are widely used in various projection and near-eye application. For one panel system, liquid crystal response time is an important variable. The panel must switch fast enough to support the display of Field color sequential with high field rates. In order to have fast response and good contrast, a vertical alignment (VA) cell was used in this study. With suitable selection on LC parameters like temperature, viscosity, elastic constant and birefringence, it is possible to get response time of around 2ms from a 2.0 um-thick vertical alignment cell. This result also indicates an ease of production control on 2.0 um cells than 1.0 um cells.

  • PDF