• Title/Summary/Keyword: Silicon Nitride Ceramic

Search Result 205, Processing Time 0.024 seconds

Micromachinng and Fabrication of Thin Filmes for MEMS-infrarad Detectors

  • Hoang, Geun-Chang;Yom, Snag-Seop;Park, Heung-Woo;Park, Yun-Kwon;Ju, Byeong-Kwon;Oh, Young-Jei;Lee, Jong-Hoon;Moonkyo Chung;Suh, Sang-Hee
    • The Korean Journal of Ceramics
    • /
    • v.7 no.1
    • /
    • pp.36-40
    • /
    • 2001
  • In order to fabricate uncooled IR sensors for pyroelectric applications, multilayered thin films of Pt/PbTiO$_3$/Pt/Ti/Si$_3$N$_4$/SiO$_2$/Si and thermally isolating membrane structures of square-shaped/cantilevers-shaped microstructures were prepared. Cavity was also fabricated via direct silicon wafer bonding and etching technique. Metallic Pt layer was deposited by ion beam sputtering while PbTiO$_3$ thin films were prepared by sol-gel technique. Micromachining technology was used to fabricate microstructured-membrane detectors. In order to avoid a difficulty of etching active layers, silicon-nitride membrane structure was fabricated through the direct bonding and etching of the silicon wafer. Although multilayered thin film deposition and device fabrications were processed independently, these could b integrated to make IR micro-sensor devices.

  • PDF

Effect of Sintering Additives and Sintering Temperature on Mechanical Properties of the $Si_3N_4$ Composites Containing Aligned $\beta-Si_3N_4$ Whisker (배향된 $\beta-Si_3N_4$ Whisker를 함유하는 $Si_3N_4$ 복합체의 기계적 특성에 미치는 소결조제와 소결온도의 영향)

  • Kim, Chang-Won;Choi, Myoung-Jae;Park, Chan;Park, Dong-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.1
    • /
    • pp.21-25
    • /
    • 2000
  • Gas pressure sintered silicon nitride based composites with 5 wt% $\beta$-Si3N4 whiskers were prepared, and the variations depending on sintering additives and sintering temperature were studied. Sintering additives were 6 wt% Y2O3-1 wt% MgO(6Y1M), 6 wt%Y2O3-1 wt% Al2O3(6Y1A), 6 wt% Y2O3-1 wt% SiO2(6Y1S), and whiskers were unidirectionally oriented by a modified tape casting technique. Samples were fully densified by gas pressure sintering at 2148 K and 2273 K. As the sintering temperature increased, the size of large elongated grains was increased. Three point flexural strength of 6Y1M and 6Y1M samples was higher than that of 6Y1S sample, and the strength decreased as the sintering temperature increased. The indentation crack length became shorter for the sample sintered at higher temperature, and the difference between the cracks length parallel to and normal to the direction of whisker alignment was decreased. In case of cracks 45$^{\circ}$off the whisker alignment direction, the crack length anisotropy disappeared.

  • PDF

${29}^Si$ MAS NMR Study on Quantitative Analysis of the Amorphous Phase in a $Si_3N_4$ Powder

  • Fujimori, Hirotaka;Kitahara, Hiromoto;Ioku, Koji;Goto, Seishi;Nakayasu, Tetsuo;Yamada, Tetsuo
    • The Korean Journal of Ceramics
    • /
    • v.6 no.2
    • /
    • pp.155-158
    • /
    • 2000
  • NMR study has been used for measuring precise quantity of the amorphous phase in the $Si_3N_4$powder. Care must be taken to allow the $^{29}$Si nuclear spin system to fully relax between pulses in order to make the signals proportional to the number of nuclei in each phase. $^{29}$Si MAS spectrum was decomposed into the three spectra of $\alpha$-, $\beta$-, and amorphous $Si_3N_4$assuming pseudo-Voigt function. Moreover, the Rietveld analysis of the powder X-ray diffraction data was performed to measure quantity of crystalline phases as $\alpha/\beta$ ratio.

  • PDF

Microstructure, Mechanical and Wear Properties of Hot-pressed $Si_3N_4-TiC$ Composites

  • Hyun Jin Kim;Soo Whon Lee;Tadachika Nakayama;Koichi Niihara
    • The Korean Journal of Ceramics
    • /
    • v.5 no.4
    • /
    • pp.317-323
    • /
    • 1999
  • Si3N4-TiC composites have been known as electrically conductive ceramics. $Si_3N_4-TiC$ composites with 2 wt% $Al_2O_3$ and 4 wt% $Y_2O_3$ were hot pressed in $N_2$ environment. The mechanical properties including hardness, fracture toughness, and flexural strength and tribological properties were investigated as a function of TiC content. $Si_3N_4-40$ vol% TiC composite was hot pressed at $1,750^{\circ}C$, $1,800^{\circ}C$, and $1,850^{\circ}C$ for 1, 3 and 5 hours in $N_2$ gas. Mechanical and tribolgical properties depended on microstructures, which were controlled by hte TiC content, hot press temperature, and hot press holding time. However, mechanical properties and tribological behaviors were degraded by the chemical reaction between TiC and N. The chemically reacted products such as TiCN, SiC, and $SiO_2$ were detered by the X-ray diffraction analysis.

  • PDF

Mechanical Properties of Si3N4 Ceramic Composites with Aligned Whisker Seeds (배향된 휘스커 종자에 의해 제조된 질화규소 세라믹 복합체의 기계적 특성)

  • Kim, Han-Gil;Bang, Kook-Soo;Jung, Sang-Jin;Park, Chan
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.8-12
    • /
    • 2013
  • Four kinds of silicon nitride composites with tri-laminate structure were prepared by stacking tapes with aligned ${\beta}-Si_3N_4$ whisker seeds. The composites were fabricated using a modified tape casting method for enhanced alignment of the whisker seeds. The relative densities of all four samples reached 99% at room temperature. The three-point flexural strengths of the samples according to the stacking sequences were measured at both room temperature and 1723 K. The high temperature strength of sample WWW was $457{\pm}14$ MPa. The fracture of sample WWW occurred mainly along the grain boundary. The room temperature strengths of samples OOO, OWO, WOW, and WWW were $430{\pm}32$ MPa, $470{\pm}19$ MPa, $700{\pm}14$MPa, and $940{\pm}14$ MPa, respectively.

Effect of Glycine Adsorption on Polishing of Silicon Nitride in Chemical Mechanical Planarization Process (CeO2 슬러리에서 Glycine의 흡착이 질화규소 박막의 연마특성에 미치는 영향)

  • 김태은;임건자;이종호;김주선;이해원;임대순
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.1
    • /
    • pp.77-80
    • /
    • 2003
  • Adsorption of glycine on$Si_3N_4$powder surface has been investigated, which is supposed to enhance the formation of passive layer inhibiting oxidation in aqueous solution. In the basic solution, multinuclear surface complexing between Si and dissociated ligands was responsible for the saturated adsorption of glycine. In addition, $CeO_2$-based CMP slurry containing glycine was manufactured and then applied to planarize$SiO_2$and$Si_3N_4$thin film. Owing to the passivation by glycine, the removal rates, Rh, were decreased, however, the selectivities, RE(SiO$_2$)/RR($Si_3N_4$), increased and showed maximum at pH=12. The suppressed oxidation and dissolution by adsorbate were correlated with the dissociation behavior of glycine at different pH and subsequent chemical adsorption.

Effect of amount of magnesia on wear behavior of silicon nitride (마그네시아 양이 질화규소의 마모거동에 미치는 영향)

  • 김성호;이수완;엄호성;정용선
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.2
    • /
    • pp.231-239
    • /
    • 1999
  • The microstructure of ceramic composite has been found to be governed by the type and amount of the secondary phase, the sintering aid, and the sintering conditions such as sintering temperature, pressure and holing time. Moreover, tribological properties are strongly dependent on microsturcture of composite and operating conditions. In this study, silicon nitride with various amount of magnesia as a sintering aid were prepared and sintered by a hot pressing (HP) technique. Microstructure, mechanical properties (hardness, strength, and fracture toughness), and tribological properties in different environments of $Si_{3}N_{4}$ (in air, water, and paraffine oil) were investigated as a function of MgO content in $Si_{3}N_{4}$. As increasing the amount of MgO in $Si_{3}N_{4}$, the glassy phase in the grain boundaries enlarged the $\beta$-phase elongated grains, and also degraded the Hertzian contact damage resistance. Tribological behaviors in air was seemed to be determined by fracture toughness of $Si_{3}N_{4}$, and those in water and paraffin oil was seemed to be determined by hardness as well as strength. Since glassy grain-boundary phase (MgO) in $Si_{3}N_{4}$ expected to be reacted with water during sliding, such tribochemical reaction reduced wear. In paraffin oil under a higher applied load, the initial sliding dominated wear rate because of Hertzian contact damage.

  • PDF

Fabrication and Evaluation of Si3N4-coated Organic/inorganic Hybrid Separators for Lithium-ion Batteries (Si3N4-코팅 유/무기 복합 분리막을 통한 리튬이온전지용 분리막의 제조 및 평가)

  • Yeo, Seung-Hun;Son, Hwa-Young;Seo, Myeong-Su;Roh, Tae-Wook;Kim, Gyu-Chul;Kim, Hyun-Il;Lee, Ho-Chun
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.1
    • /
    • pp.48-53
    • /
    • 2012
  • Polyethylene (PE) separator is the most popular separator for lithium-ion batteries. However, it suffers from thermal contraction and mechanical rupture. In order to improve the thermal/mechanical dimensional stabilities, this study investigated the effects of $Si_3N_4$ coating. SCS (Silicon-nitride Coated Separator) has been fabricated by applying 10 ${\mu}m$-thick $Si_3N_4$/PVdF coating on one side of PE separator. SCS exhibits enhanced thermal stability over $100{\sim}150^{\circ}C$: its thermal shrinkage is reduced by 10~20% compared with pristine PE separator. In addition, SCS shows higher tensile strength than PE separator. Employing SCS hardly affects the C-rate performance of $LiCoO_2$/Li coin-cell, even though its ionic conductivity is somewhat lower than that of PE separator.

Characterization of Nitrogen-Doped $TiO_2$ Thin Films Prepared by Metalorganic Chemical Vapor Deposition (유기금속 화학 기상증착법으로 실리콘 기판위에 증착된 질소치환 $TiO_2$ 박막의 특성분석)

  • 이동헌;조용수;이월인;이전국;정형진
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.12
    • /
    • pp.1577-1587
    • /
    • 1994
  • TiO2 thin films with the substitution of oxygen with nitrogen were deposited on silicon substrate by metalorganic chemical vapor deposition (MOCVD) using Ti(OCH(CH3)2)4 (titanium tetraisopropoxide, TTIP) and N2O as source materials. X-ray diffraction (XRD) results indicated that the crystal structure of the deposited thin films was anatase TiO2 with only (101) plane observed at the deposition temperatures of 36$0^{\circ}C$ and 38$0^{\circ}C$, and with (101) and (200) plane at above 40$0^{\circ}C$. Raman spectroscopic results indicated that the crystal structure was anatase TiO2 in accordance with the XRD results without any rutile, fcc TiN, or hcp TiN structure. No fundamental difference was observed with temperature increase, but the peak intensity at 194.5 cm-1 increased with strong intensity at 143.0 cm-1 for all samples. The crystalline size of the films varied from 49.2 nm to 63.9 nm with increasing temperature as determined by slow-scan XRD experiments. The refractive index of the films increased from 2.40 to 2.55 as temperature increased. X-ray photoelectron spectroscopy (XPS) study showed only Ti 2s, Ti 2p, C 1s, O 1s and O 2s peaks at the surface of the film. The composition of the surface was estimated to be TiO1.98 from the quatitative analysis. In the bulk of the film Ti 2s, Ti 2p, O 1s, O 2s, N 1s and N 2s were detected, and Ti-N bonding was observed due to the substitution of oxygen with nitrogen. A satellite structure was observed in the Ti 2p due to the Ti-N bonding, and the composition of titanium nitride was determined to be about TiN1.0 from the position of the binding energy of Ti-N 2p3/2 and the quatitative analysis. The spectrum of Ti 2p energy level could be the sum of a 4, 5, or 6 Gaussian curve reconstruction, and the case of the sum of the 6 Gaussian curve reconstruction was physically most meaningful. From the results of Auger electron spectroscopy (AES), it was known that the composition was not varied significantly throughout the whole thickness of the film, and silicon oxide was not observed at the interface between the film and the substrate. The composition of the film was possible (TiO2)1-x.(TiN)x or TiO2-2xNx and in this experimental condition x was found to be about 0.21-0.16.

  • PDF

Effect of the Whisker Amount and Orientation on Mechanical Properties of the Si$_3$N$_4$ based Composites (Si$_3$N$_4$ Whisker의 첨가량과 배열방향이 Si$_3$N$_4$ 복합 소결체의 기계적 특성에 미치는 영향)

  • Kim, Chang-Won;Park, Dong-Soo;Park, Chan
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.1
    • /
    • pp.43-49
    • /
    • 1999
  • Gas pressure sintered silicon nitride based composites with 0~5wt% $\beta$-Si3N4 whiskers were prepared. The whiskers were unidirectionally oriented by a modified tape casting technqiue and green bodies with various microstructure were formed by changing stacking sequences of sheets cut from the tape. Orientations of the large elongated grains of the sample after gas pressure sintering were the same as the those of the whiskers of green body, and the sintering shrinkage and mechanical properties of sintered sample were consistent with the microstructural characteristics. In case of unidirectional samples, the sintering shrinkage normal to whisker alignment direction was larger than that parallel to the direction. The shrinkage difference inceaed as the whiskercontent increaed. As whisker content increaed, the crack length normal to and parallel to tape casting direction became shorter and larger, respectively. Although the grain size increased by th whisker addition, the flexural strength of unidirectional samples was not lower than that of smaple without the whisker. In case of crossplied and 45$^{\circ}$rotated samples, the anisotropy of mechanical preoperties disappeared.

  • PDF