• Title/Summary/Keyword: Silicon Mold Insert

Search Result 4, Processing Time 0.017 seconds

Fabrication of micro lens array using micro-compression molding (미세압축성형을 통한 플라스틱 미세렌즈의 성형)

  • Moon, Su-Dong;Kang, Shin-Il;Yee, Young-Joo;Bu, Jong-Uk
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.743-746
    • /
    • 2000
  • Plastic microlenses play an important role in reducing the size, weight, and the cost of the systems in the fields of optical data storage and optical communication. In the present study, plastic microlens arrays were fabricated using micro-compression molding process. The design and fabrication procedures for mold insert were simplified by using silicon instead of metal. A simple but effective micro compression molding process, which uses polymer powder, were developed for microlens fabrication. The governing process parameters were temperature and pressure histories and the micromolding process was controlled such that the various defects developing during molding process were minimized. The radius and magnification ratio of the fabricated microlens were $125{\mu}m$ and over 3.0, respectively.

  • PDF

Fabrication of Micro Lens Array Using Micro-Compression Molding (미세압축성형을 통한 플라스틱 미세렌즈의 성형)

  • Gang, Sin-Il;Mun, Su-Dong;Lee, Yeong-Ju;Bu, Jong-Uk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1242-1245
    • /
    • 2001
  • Plastic microlenses play an important role in reducing the size, weight, and the cost of the systems in the fields of optical data storage and optical communication. In the present study, plastic microlens arrays were fabricated using micro-compression molding process. The design and fabrication procedures for mold insert were simplified by using silicon instead of metal. A simple but effective micro compression molding process, which uses polymer powder, were developed for microlens fabrication. The governing process parameters were temperature and pressure histories and the micromolding process was controlled such that the various defects developing during molding process were minimized. The radius and magnification ratio of the fabricated microlens were 125$\mu\textrm{m}$ and over 3.0, respectively.

A Study on the Resin Flow through Fibrous Preforms in the Resin Transfer Molding Process (수지이동 성형공정에서 섬유직조망내의 수지유동에 관한 연구)

  • 김성우;이종훈;이미혜;남재도;이기준
    • Composites Research
    • /
    • v.12 no.2
    • /
    • pp.70-81
    • /
    • 1999
  • Resin transfer molding(RTM) as a composite manufacturing process is currently of great interest in the aerospace industry requiring high performance composite parts. In this study, an analysis of mold filling in the RTM process was carried out by numerical simulation using finite element/control volume technique. Experimental work for the visualization of resin flow through fibrous preform was also conducted in order to quantitatively measure the permeabilities of the fiber mats and to evaluate the validity of the developed numerical code. The different types of fiber mats and silicon oils were selected as reinforcements and resin materials, respectively. The effects of fibrous preform structure, mold geometry, and preplaced insert on the flow front patterns during mold filling were examined by integrating the model predictions and experimental results. The flow fronts predicted by numerical simulation were in good agreement with those observed experimentally. However, according to the regions of the mold, some deviations between predicted and observed flow fronts could be found because of non-uniform fiber volume fraction. Weldline locations for the resin flow through round insert preplaced in the mold could be qualitatively deduced based on predicted flow fronts.

  • PDF

Preparation of Exfoliated PCL/Clay Nanocomposite and Its Characterization (박리형 PCL/Clay 나노복합재료 제조와 특성)

  • 유성구;박대연;배광수;서길수
    • Polymer(Korea)
    • /
    • v.25 no.3
    • /
    • pp.421-426
    • /
    • 2001
  • 11-Aminododecanoic acid, to insert the functional group of -COOH reacted with the end group of poly($\varepsilon$-caprolactone) diol, and cetyltrimethylammonium bromide (CTMA), to increase the d-spacing of Montmorillonite (MMT), were intercalated into $Na^+;_-$MMT. The modified MMT was reacted with poly(${varepsilon}-caprolactone$) diol ($M_n{=2000$) in THF solution at $80^{\circ}C$ for 4 hrs. After reaction, poly(${varepsilon}-caprolactone$) ($M_n{=80000$) was mixed into the solution for 12 hrs. To prepare the PCL/clay nanocomposite film this solution was cast into the silicon mold at $60^{\circ}C$ in vacuum oven for 6 hrs. From the results of XRD and TEM, it was found that the exfoliated PCL/clay nanocomposite were prepared. The effects of the amount of MMT on the mechanical properties and thermal properties of PCL/clay nanocomposites have been investigated by tensile tester and DSC. Because the MMT was dispersed homogeneously in PCL matrix, the Young's modulus of the nanocomposite were found to be excellent. However, MMT dispersed in PCL matrix had almost no effect on the tensile strength of the composites. The crystallization temperature of PCL increased in proportion to 3 wt% MMT in the PCL matrix.

  • PDF