• Title/Summary/Keyword: Silicates

Search Result 167, Processing Time 0.026 seconds

A Study on the Surface-Treatment Agent as Concrete Repair Materials (콘크리트 보수재료로서 도포형 표면강화물질 검토)

  • 김도겸;고경택;김성욱;류금성;이장화
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.497-502
    • /
    • 2001
  • We examined the silicate-based material to develop the surface-treatment agent, which would be used to restore performance of the deteriorated concrete and to inhibit corrosion of the reinforcing bar. As a part of the study, we carried out experiments of the penetration and strengthening properties of concrete treated by the considering agent. The variables of experiment, were the type of silicates, the ratio of distilled water-silicate, the usage of surface-strengthening material, and the usage of biochemical material. The penetrating ability of concrete is assessed by viscosity and surface tension. Also assessments of strengthening effects of concrete are performed on compressive strength, absorption, and water permeability tests.

  • PDF

Characterization of Polymer and Nano-MMT-composite as Binder of Recycled-Pet Polymer Concrete (폴리머콘크리트의 결합제로서 PET재활용 폴리머와 나노 MMT 복합체의 특성)

  • Jo, Byung-Wan;Park, Seung-Kook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.292-295
    • /
    • 2004
  • Recently, polymer-clay hybrid materials have received considerable attention from both a fundamental research and application point of view. This organ-inorganic hybrid, which contains a nanoscale dispersion of the layered silicates, is a material with greatly improved thermal and mechanical characteristics. Two classes of nanocomposites were synthesized using an unsaturated polyester resin as the matrix and sodium montmorillonite as well as an organically modified montmorillonite as the reinforcing agents. X -ray diffraction pattern of the composites showed that the interlayer spacing of the modified montmorillonite were exfoliated in polymer matrix. The mechanical properties also supported these findings, since in general, tensile strength, modulus with modified montmorillonite were higher than the corresponding properties of the composites with unmodified montmorillonite. Adding organically modified clay improved the tensile strength of unsaturated polyester by $22\%$ and the tensile modulus of unsaturated polyester was also improved by $34\%$.

  • PDF

A Study of Thermal Properties of LDPE-Nanoclay Composite Films

  • Bumbudsanpharoke, Nattinee;Ko, Seonghyuk
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.21 no.3
    • /
    • pp.107-113
    • /
    • 2015
  • This work focused on the study of thermal properties and kinetic behavior of LDPE-nanoclay composite films. The effect of nanoclay content (0.5, 1, 3, and 5 wt%) on thermal stability and crystallization characteristics of the nanocomposites were investigated by Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). The results from endothermic curve showed that the nanoclay played an important role in the crystallization of nanocomposites by acting as nucleating agent. From exothermic curve, there was a crystallization temperature shift which was attributed to crystallization process induced by nanoclay. The TGA results showed that the addition of nanoclay significantly increased the thermal stability of LDPE matrix, which was likely due to the characteristic of layered silicates/clays dispersed in LDPE matrix as well as the formation of multilayered carbonaceous-silicate char. A well-known Coats-Redfern method was used to evaluate the decomposition activation energy of nanocomposite. It was demonstrated that introducing of nanoclay to LDPE matrix escalated the activation energy of nanocomposite decomposition resulting in thermal stability improvement.

Nanotechnology in elastomers- Myth or reality

  • Shanmugharaj, A.M.;Ryu, Sung-Hun
    • Rubber Technology
    • /
    • v.12 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Nanotechnology is the fast becoming key technology of the $21^{st}$ century. Due to its fascinating size-dependent properties, it has gained significant important in various sectors. Myths are being formed on the proverbal nanotechnology market, but the reality is the nanotechnology is not a market but a value chain. The chain comprises of - nanomaterials (nanoparticles) and nanointermediates (coatings, compounds, smart fabrics). Elastomer based nanocomposites reinforced with low volume fraction of nanofillers is the first generation nanotechnology products and it has attracted great interest due to their fascinating properties. The incorporation of nanofillers such as nanolayered silicates, carbon nanotubes, nanofibers, metal oxides or silica nanoparticles into elastomers improves significantly their mechanical, thermal, barrier properties, flame retardency etc., Extremely small particle size, high aspect ratio and large interface area yield an excellent improvement of the properties in a wide variety of the materials. Uniform dispersion of the nanofillers is a general prerequisite for achieving desired properties. In this paper, current developments in the area of elastomer based nanocomposites reinforced with layered silicate and carbon nanotube fillers are highlighted.

  • PDF

Processing of Microcellular Nanocomposite Foams by Using a Supercritical Fluid

  • Wee, Dongho;Seong, Dong Gi;Youn, Jae Ryoun
    • Fibers and Polymers
    • /
    • v.5 no.2
    • /
    • pp.160-169
    • /
    • 2004
  • Polystyrene/layered silicate nanocomposites were prepared by melt intercalation. To examine the distribution of the clay in polymer matrix, small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM) were used. Intercalated nanocomposites were obtained and their rheological properties were investigated. Microcellular nanocomposite foams were produced by using a supercritical fluid. As clay contents increased, the cell size decreased and the cell density increased. It was found that layered silicates could operate as heterogeneous nucleation sites. As the saturation pressure increased and the saturation temperature decreased, the cell size decreased and the cell density increased. Microcellular foams have different morphology depending upon the dispersion state of nanoclays.

Study on the Conversion of Ortho to Para Hydrogen (ORTHO/PARA 수소의 전환에의 연구)

  • Kim, Jong-Pal;Lee, Kwang-Hyun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.3
    • /
    • pp.317-324
    • /
    • 2007
  • The conversion reaction of ortho to para hydrogen was studied. The percentage of ortho and para hydrogen is mainly dependent on the equilibrium temperature. Because this reaction is known to be accelerated by the catalyst such as nickel-silicate and ruthenium on silica, we focused in the test and development of the catalysts. We studied metal-silicates because they provide high metal dispersion on support. Nickel-silicate, ruthenium-silicate and mixed-silicate were prepared by the coprecipitation method and used in the reaction at the temperature of liquid nitrogen. The conversion was measured by the difference of thermal conductivity between reference gas and sample gas. The activation condition was important and it affected the activities of the catalysts. Nickel-silicate showed high activities. Ruthenium-silicate also showed relative high activities but mixed-silicate showed poor activities.

Characteristics of Porous Wollastonite Ceramics Fabricated by Hydrothermal Synthesis (수열 합성에 의해 제조된 다공성 Wollastonite Ceramics의 특성)

  • 김병훈;나용한
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.8
    • /
    • pp.893-900
    • /
    • 1995
  • The porous wollastonite ceramics were fabricated after firing calcium silicates, obtained using natural resources and by-products of power plants by hydrothermal synthesis, without organic fibers or asbestos for reinforcement agent. A specimen from diatomite as a SiO2 staring raw material had the highest strength owing to normal grain growth and good densification from homogeneous sperhcial C-S-H hydrates. A specimen from SiO2 sol as a SiO2 starting raw material showed tobermolite, but fly ash and mixed system did xonotlite after hydrothermal synthesis. The specimen from fly ash showed the lowest firing shirikage and strength changes in the firing range from 50$0^{\circ}C$ to 120$0^{\circ}C$. The other phases in all specimens changed to wollastonite phase after firing at 100$0^{\circ}C$. Also the average pore size was distributed from 0.2${\mu}{\textrm}{m}$ to 2${\mu}{\textrm}{m}$.

  • PDF

Degradation and Rheological Properties of Biodegradable Nanocomposites Prepared by Melt Intercalation Method

  • Lee, Su-Kyong;Seong, Dong-Gi;Youn, Jae-Ryoun
    • Fibers and Polymers
    • /
    • v.6 no.4
    • /
    • pp.289-296
    • /
    • 2005
  • Biodegradable nanocomposites were prepared by mixing a polymer resin and layered silicates by the melt intercalation method. Internal structure of the nanocomposite was characterized by using the small angle X-ray scattering (SAXS) and transmission electron microscope (TEM). Nanocomposites having exfoliated and intercalated structures were obtained by employing two different organically modified nanoclays. Rheological properties in shear and extensional flows and biodegradability of nanocomposites were measured. In shear flow, shear thinning behavior and increased storage modulus were observed as the clay loading increased. In extensional flow, strain hardening behavior was observed in well dispersed system. Nanocomposites with the exfoliated structure had better biodegradability than nanocomposites with the intercalated structure or pure polymer.

Water chemistry controlled by drainage basin: Case study in the Han River, South Korea

  • Ryu Jong-Sik;Lee Gwang-Sik;Sin Hyeong-Seon;An Gyu-Hong;Jang Ho-Wan
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.405-407
    • /
    • 2005
  • To evaluate the main hydrogeochemical characteristics, river waters are investigated using element리 and isotopic compositions in South Korea. In this area, the chemical compositions are mostly classified into three groups; $Ca^{2+}-{HCO_3}^-$ type, $Ca^{2+}-Cl^{-}-{NO_3}^-$ type and $Ca^{2+}-{HCO_3}^{-}-Cl^{-}-{NO_3}^-$ type. These types are affected by two major factors: water-rock interaction and anthropogenic inputs such as sewage and fertilizers. Based on the values of ${\delta}^{18}O$ and ${\delta}D$, most of waters are originated from precipitation except two samples contaminated. The lithology and geography of basins mainly control the water chemistry. Elemental and isotopic compositions show that water chemistry are mainly controlled by three end members, especially by carbonate dissolution, and suggest that anthropogenic input affect the water chemistry. Also, three weathering sources are identified: silicates, dolomite and limestone.

  • PDF

Ore and Mineral Paragenesis of Daehwa and Donsan Tungsten-Molybdenum Deposits (대화(大華) 및 돈산(敦山) 중석(重石)·모리브덴 광상(鑛床)의 광석(鑛石)과 광물공생관계(鑛物共生關係))

  • Park, Hee-In;Choi, Suck-Won;Kim, Deog-Lae
    • Economic and Environmental Geology
    • /
    • v.18 no.1
    • /
    • pp.11-22
    • /
    • 1985
  • The Daehwa and Donsan tungsten-molybdenum deposits are composed of numerous fissure-filling veins developed in Precambrian gneiss and Cretaceous granite and quartz porphyry. K-Ar age of biotite in granite and that of muscovite in ore veins are $105{\pm}5\;Ma$ and 88.2~88.6 Ma respectively. Occurrence of ore deposits shows that relevant igneous rock is possibly quartz porphyry rather than above mentioned granite in temporal view point. Vein structure and mineralogy suggest that ore veins were formed by continuous vein filling, not by repeated mineralization. Three distinct depositional stages with decreasing age can be devided on the basis of mineral paragenesis and fluid inclusion studies: Stage I, deposition of oxides and silicates; stage II, deposition of base-metal sulfides and sulfosalts with carbonates; stage III, deposition of barren calcite and fluorite. Tungsten, molybdenum and tin mineralization occurred in stage I.

  • PDF