• Title/Summary/Keyword: Silicate cement

Search Result 258, Processing Time 0.023 seconds

Assessment of compressibility behavior of organic soil improved by chemical grouting: An experimental and microstructural study

  • Ghareh, Soheil;Kazemian, Sina;Shahin, Mohamed
    • Geomechanics and Engineering
    • /
    • v.21 no.4
    • /
    • pp.337-348
    • /
    • 2020
  • Tropical organic soils having more than 65% of organic matters are named "peat". This soil type is extremely soft, unconsolidated, and possesses low shear strength and stiffness. Different conventional and industrial binders (e.g., lime or Portland cement) are used widely for stabilisation of organic soils. However, due to many factors affecting the behaviour of these soils (e.g., high moisture content, fewer mineral particles, and acidic media), the efficiency of the conventional binders is low and/or cost-intensive. This research investigates the impact of different constituents of cement-sodium silicate grout system on the compressibility behaviour of organic soil, including settlement and void ratio. A microstructure analysis is also carried out on treated organic soil using Scanning Electron Micrographs (SEM), Energy Dispersive X-ray spectrometer (EDX), and X-ray Diffraction (XRD). The results indicate that the settlement and void ratio of treated organic soils decrease gradually with the increase of cement and kaolinite contents, as well as sodium silicate until an optimum value of 2.5% of the wet soil weight. The microstructure analysis also demonstrates that with the increase of cement, kaolinite and sodium silicate, the void ratio and porosity of treated soil particles decrease, leading to an increase in the soil density by the hydration, pozzolanic, and polymerisation processes. This research contributes an extra useful knowledge to the stabilisation of organic soils and upgrading such problematic soils closer to the non-problematic soils for geotechnical applications such as deep mixing.

Characteristics of early strength development of blended cement according to the addition of C-S-H based Hardening acceleration (C-S-H계 조강제 첨가에 따른 혼합시멘트의 조기 강도 발현 특성)

  • An, Tae-Yun;Ra, Jeong-Min;Park, Jun-Hyung;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.127-128
    • /
    • 2022
  • In order to realize carbon neutrality in the international society, research on supplementary cementitious materials(SCMs) has been actively conducted as a way to reduce carbon dioxide emissions in the cement industry. However, the use of SCMs causes problems of initial hydration delay and strength reduction due to the reduction of tricalcium silicate(C3S) in the cement clinker. Therefore, in this study, the initial hydration and basic characteristics of cement mortar were confirmed by adding a C-S-H based hardening acceleration to blended cement mixed with Portland cement, blast furnace slag, fly ash, and limestone power. As a result of the heat of hydration and compressive strength test, it was confirmed that when hardening acceleration was added, the initial reactivity was high, so the heat of hydration was promoted, and the initial strength was increased. It is considered to be due to C-S-H seeding effect. Therefore, it is judged that the use of C-S-H based hardening acceleration can supplement the problem of initial hydration delay of blended cement in Korea.

  • PDF

Microstructure and Phase Stability of $\beta$-Dicalcium Silicate ($\beta$형 Dicalcium Silicate 광물의 상 안정성 및 미세구조변화)

  • 박춘근
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.9
    • /
    • pp.957-962
    • /
    • 1997
  • Dicalcium silicate has many polymorphs according to temperature. $\beta$-dicalcium silicate which exists in cement is stabilized by minor components drived from raw materials regardless of temperature, such as high temperature and room temperature. K2O, SO3 and B2O3 are effective stabilizers for $\beta$-dicalcium silicate at room temperature. B2O3 was the most effective stabilizer. Transformation from $\beta$ to ${\gamma}$ phase causes dicalcium silicate to change volume, resulting in dusting phenomenon. When B2O3 was used the phase transformation is the least than any other stabilizers. In addition, the starting temperature of quenching influences phases transformation : low temperature of quenching presented much phase transformation and decreased size of parameter of $\beta$-dicalcium silicate.

  • PDF

An Experimental Study Concerning the Solubility of Dental Cements (치과용(齒科用) CEMENT의 용해도(容解度)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Lee, Sun-Koog
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.9 no.1
    • /
    • pp.41-45
    • /
    • 1969
  • A major disadvantage of Dental cements is their solubility. So it is very important to measure the exact amount of solubility to select clinically suitable materials. The most common laboratory test for solubility is the measurement of disintegration in distilled water, as outlined in A.D.A. Specifications 8 and 9, In addition to the possible factors influencing the solubility, the experiments were all conducted in compliance with A.D.A. Specifications. The solubility of 2 Zinc Phosphate cements and 1 Silicate cement in time of dissolution, concentration of solute in dissolving medium, and type of dissolving medium were investigated. The following results were obtained. 1. Generally the materials were more soluble in organic acids than in distilled water. 2. The dissolution cements tends be minimized by tests utilizing prolonged storage in the same media. 3. In Acetic acid solution, Zinc Phosphate cements were more soluble than Silicate cement, and in Citric acid solution both were markedly more soluble. 4. Solubility was increased by continually presenting fresh liquid, unsaturated with solute, to the cement-water interface.

  • PDF

Sulfate Attack and the Role of Cement Compositions

  • Lee, Seung-Tae;Lee, Seung-Heun
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.9
    • /
    • pp.465-470
    • /
    • 2007
  • This paper presents an experimental study of the sulfate resistance of mortars and pastes exposed to sodium sulfate solutions up to one year. In order to check deterioration modes due to sulfate attack, the sodium sulfate solution was varied at three concentration steps (3,380, 10,140 and 33,800 ppm of $SO_4^{2-}$ ions), and maintained at ambient temperature. The tests include a visual examination, expansion and compressive strength loss measurements as well as x-ray diffraction tests. The experimental data indicated that the use of cement with a low $C_3A$ content and low silicate ratio has a beneficial effect on the sulfate attack of mortars. In contrast, the mortars with a high $C_3A$ content and high silicate ratio became severely degraded due to the formation of ettringite, gypsum and/or thaumasite in the cement matrix.

Analysis of the Changes of composition of Hardened Cement at High Temperature by X-Ray Diffraction (X-선 회절 분석을 통한 고온 피해 시멘트 경화체의 성분 변화 분석)

  • Ji, Woo-Ram;Park, Ji-Woong;Shin, Ki-Don;Lee, Gun-Cheol;Heo, Young-Sun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.113-114
    • /
    • 2017
  • In this study, the change of composition of cement hardened at high temperature through XRD was observed. The specimen was made of cement paste and the heating rate condition was applied at rapid thermal annealing (10.0℃ / min). The decrease of calcium hydroxide was not confirmed, but the calcium carbonate tended to be impossible or decreased after 800℃. Calcium silicate and larnite were observed to increase with increasing temperature. It is considered that silicic acid, which is a stable structure due to the decomposition of calcium silicate, is changed into a phase such as lime.

  • PDF

Investigation on the Structural Changes of Calcium Silicate Hydrates in Nanosilica-incorporated Cement Pastes exposed to Heating using Nuclear Magnetic Resonance Spectroscopy (핵자기 공명을 활용한 가열에 따른 나노실리카 혼입 시멘트 페이스트 내 칼슘실리케이트 수화물 구조 변화 해석)

  • Suh, Heongwon;Li, Pei-Qi;Liu, Jun-Xing;Bae, Sungchul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.151-152
    • /
    • 2020
  • When concrete is exposed to fire, the thermal decomposition of hydrates of Portland cement paste results in critical damage to the concrete structure of a building. Recently, nanosilica arose as the effective nano-additive which can enhance the thermal resistance of the cementitious materials. However, the mechanism of the enhancement was not elucidated specifically. In this study, we investigated the properties of calcium silicate hydrates(C-S-H)of the nanosilica incorporated cement paste after heating to different heating temperatures (200℃, 500℃, and 800℃) by 29Si nuclear magnetic resonance. The results showed that the polymerization of C-S-H of nanosilica incorporated samples was larger than ordinary cement paste after heating to 200℃, and C-S-H formed during heating process to 500℃ due to the pozzolanic reaction during heating process.

  • PDF

An Experimental Study for Strength Improvement of Soft Ground using Hardening Agent and Silicate Mineral Power (수용성 고화재와 규산염광물 결합재를 활용한 지반개량재의 실험적 연구)

  • Kim, Sung-Wook;Choi, Eun-Kyeong;Cho, Jinwoo;Lee, JuHyung;Lee, Kyu-Hwan
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.4
    • /
    • pp.8-15
    • /
    • 2015
  • The demand for environmental consideration is on the increase in civil engineering. This study focuses on the development of technology to reduce the use of carbonate cement and improve its performance by using a silicate mineral and hardening agents, and presents the test results for the demonstrative evaluation of the properties of the raw material. Highly active feldspar was used as a binder to augment the bonding of the carbonate cement, and their change in strength was observed after test piece construction with the addition of soluble hardening agent. The uniaxial compression strength of the test piece of the general Portland cement with the addition of 0.5% soluble hardening agent, showed an increase by 33% and that of the test piece of cement with the addition of 70% substituted with feldspar increased by 28%. The strength of viscous soil; classified as soft ground, showed an increase of a maximum of 1.7 times when it was mixed with cement and solidifier depending on the curing period. These tests confirmed that a soluble solidifier is effective for improving the strength of a cement binder and that the highly active feldspar can be used as a binder.

Effect of $CaSO_4$ and $BaSO_4$ on the Formation of Portland Cement Clinker (Portland Cement Clinker 생성반응에 미치는 $CaSO_4$$BaSO_4$의 영향)

  • 서일영;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.11 no.1
    • /
    • pp.29-35
    • /
    • 1974
  • Effect of calcium sulfate and barium sulfate on the formation of portland cement clinker was studied by means of chemical analysis. DTA and X-ray diffraction analysis. In the presence of liquid phase, effect of the additives on the formation of tricalcium silicate was examined according to the reaction, 2CaO.$SiO_3$+CaO$\longrightarrow$3CaO.$SiO_3$, which is the principal reaction in portland cement clinkerization, and optimum conditions in firing clinker concerning amount of additive, firing time and temperature were determined, and its kinetics was referred to. The experimental results are summerized as follow: (1) Appropriate burning temperature range of cement clinker is more limited as the content of calcium sulfate in clinker is increased. Amount of calcium sulfate, firing time and temperature in proper condition of clinkerization is related to each others. Being added suitable quantity of calcium sulfate, firing temperature of clinker can be lowered about $100^{\circ}C$. (2) When 3-5 mole% of calcium sulfate is added, firing time of 15-30 minutes at about $1380^{\circ}C$ is reasonable, and if the content is over7 mole %, firing for 1 hr. or more at $1350^{\circ}C$ is anticipated to be optimum condition. (3) In the reaction of tricalcium silicate formation, the role of barium sulfate as a mineralizer is similar to that of calcium sulfate, but the optimum firing temperature of cement clinker containing barium sulfate tends to be 20-$30^{\circ}C$ higher than that of clinker containing calcium sulfate. (4) When barium sulfate is used as mineralizer, 2-3 mole % of it to tricalcium silicate is recommended and if it is added more than this amount, free CaO is increased rapidly in clinker and alite formation is inhibited.

  • PDF

Degradation Propeties of Alkali-Activated Alumino-Silicate Composite Body Exposed to High Temperature (알칼리 활성화 알루미노실리케이트계 경화체의 고온 열화 특성)

  • Kim, Won-Ki;Kim, Hong-Joo;Lee, Seung-Heun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.627-630
    • /
    • 2005
  • This paper examines degradation properties of alkali-activated alumino-silicate composite body by NAS solution exposed to high temperature. Activators include sodium hydroxides and sodium silicate solution. In the result of experiment, flexural and compressive strength of AAS base mortar exposed to high temperature ($400\~600^{\circ}C$) was higher than alumina cement base mortar. Particularly, In case of compressive strength, alumina cement base mortar was decreased by about $60\~70\%$. While, AAS base mortar exposed to high temperature ($400\~600^{\circ}C$) was higher than that curing by room temperature. The above results showed that AAS base inorganic binder has a good mechanical properties exposed to high temperature($400\~600$).

  • PDF