• Title/Summary/Keyword: Silica-fume

Search Result 582, Processing Time 0.023 seconds

Influence on the Autogenous and Drying Shrinkage of High Performance Concrete by Mineral Admixture (고성능 콘크리트의 자기 및 건조수축에 미치는 혼화재의 영향)

  • 배정렬;홍상희;고경택;김성욱;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.415-420
    • /
    • 2002
  • This study is intended to investigate the influence of mineral admixtures on the autogenous and drying shrinkage of high performance concrete. According to results, drying shrinkage increases with increase of fly ash content, and it does not show difference with replacement of blast furnace slag powder. It increases when incorporating silica fume or fly ash and silica fume together. The autogenous shrinkage shows increasing tendency with increase of silica fume and blast furnace slag powder content, and incorporating of silica fume or fly ash and silica fume together has effects on reducing autogenous shrinkage. Therefore, it is considered that application of both silica fume and fly ash can reduce the cracks caused by autogenous shrinkage, including enhancement in strength and placeability of high performance concrete.

  • PDF

Effect of polyolefin fibers on the permeability of cement-based composites

  • Hsu, Hui-Mi;Lin, Wei-Ting;Cheng, An
    • Computers and Concrete
    • /
    • v.9 no.6
    • /
    • pp.457-467
    • /
    • 2012
  • This study evaluates the permeability of cement-based composites, which are a mix of polyolefin fibers and silica fume. Test results indicate that permeability increases as the water/cementitious ratio increases. Silica fume in cement-based composites produced hydrated calcium silicate and filled the pores. However, permeability decreased as the addition of silica fume increased. Specimens containing polyolefin fibers also provided higher permeability resistance. The polyolefin fiber length did not have a significant effect on permeability. The decrease in the permeability is mainly due to the addition of silica fume and lower water/cementitious ratio. Addition of fibers marginally decreases the permeability. Incorporating polyolefin fiber and silica fume in composites achieved more significant decreases in permeability. The correlated test results reveal the interrelationship between them.

Influence of Ground Granulated Blast-Furnce Slag on Compressive Strength of Ultra-High Strength SFRCC (고로슬래그 미분말이 초고강도 SFRCC의 압축강도에 미치는 영향)

  • Park, Jung-Jun;Koh, Kyung-Taek;Ryu, Gum-Sung;Kang, Su-Tae;Kim, Sung-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.399-402
    • /
    • 2005
  • In ultra-high strength SFRCC(Steel Fiber Reinforced Cementious Composites), much silica fume are used to improve strength, flowability and durability. Silica fume have merits of filling the voids, enhancement of reheological chracteristics, production of secondary hydrates by pozzolanic reaction in reactive powder concretes. However silica fume has been imported in high-cost in domestic industry, we need to investigate replaceable material in stead of silica fume in a view of economy Therefore, in this paper, in order to investigate replacement of silica fume in ultra-high strength SFRCC we used the granulate blast-furnce slag with finess 4000, 6000, 8000. As a results, we have evaluated that the bigger the finess the more increase compressive strength of ultra-high strength SFRCC using the blast-furnce slag and there was no problem from the viewpoint of flowability and compressive strength when we use blast-furnce $50\%$ with replacement ratio of silica fume

  • PDF

Optimum mixture of high performance hybrid fiber reinforced concrete using fractional experimental design by orthogonal array (일부실시 직교배열 실험설계에 의한 고성능 하이브리드 섬유보강 콘크리트 배합 최적화)

  • Park, Tae-Hyo;Noh, Myung-Hyun;Park, Choon-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.341-344
    • /
    • 2004
  • In the present research, slump, modulus of rupture (MOR) and flexural toughness $(I_{30})$ of high performance hybrid fiber reinforced concrete (HPHFRC) mixed with micro-fiber (carbon fiber) and macro-fiber (steel fiber) and replaced with silica fume were assessed with the analysis of variance (ANOVA). Steel fiber was a considerable significant factor in aspect of the response values of MOR and boo Based on the significance of factors related to response values from ANOVA, following assessments were available; Slump decrease: carbon fiber >> steel fiber > silica fume; MOR: steel fiber > silica fume > carbon fiber; $I_{30}$: steel fiber > carbon fiber > silica fume. Steel fiber $1.0\%$, carbon fiber $0.25\%$ and silica fume $5.0\%$, and Steel fiber $1.0\%$, carbon fiber $0.25\%$ and silica fume $2.5\%$ were obtained as the most optimum mixture.

  • PDF

An Experimental Study on the Mechanical Properties and Rebound Ratios of SFRS with Silica Fume

  • Son, Young-Hyun;Chai, Won-Kyu
    • International Journal of Safety
    • /
    • v.8 no.2
    • /
    • pp.20-25
    • /
    • 2009
  • In this study, an experiment in the field was performed to analyze the mechanical properties and the influence of steel fiber and silica fume on the rebound ratios of shotcrete. The experimental parameters which are the reinforcing methods (steel fiber, wire mesh), steel fiber contents (0.0%, 0.5%, 0.75%, 1.0%), silica fume contents (0.0%, 10.0%), layer thickness (60 mm, 80 mm, 100 mm), and the placing parts (sidewall, shoulder, crown) were chosen. From the mechanical test, it was found that the flexural strength and toughness is significantly improved by the steel fiber and/or silica fume. According to the results for the side wall in this test, the larger the fiber contents are in case of steel fiber reinforced shotcrete, the less the rebound ratios are within the range of 20-35%, compared to the wire mesh reinforced shotcrte. And also, the reduced rebound ratios were very larger in using steel fiber reinforced shotcrete with silica fume content of 10%, and these results are true of the shoulder and the crown. respectively.

Evaluation on the Performance of Silica Fume Blended Cement Matrix Exposed to External Sulfate Attack (황산염침식을 받은 실리카 퓸 혼합 시멘트 경화체의 성능 평가)

  • Lee, Seung-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.4
    • /
    • pp.121-128
    • /
    • 2007
  • The present study evaluates the resistance to sulfate attack of cement matrix with or without silica fume. The main variable was the replacement levels of silica fume. In order to introduce sulfate attack to cement matrix, mortars and pastes was exposed to sodium sulfate solution for 510 days. Visual examination, expansion and compressive strength loss of mortars in addition to characteristics of pore for the paste samples were regularly investigated. From the test results, it was clearly observed that the cement matrix with silica fume was very resistant to sulfate attack irrespective of the replacement levels of silica fume. However, the severe deterioration due to sulfate attack was found in cement matrix without silica fume.

Prediction of strength development of fly ash and silica fume ternary composite concrete using artificial neural network (인공신경망을 이용한 플라이애시 및 실리카 흄 복합 콘크리트의 압축강도 예측)

  • Fan, Wei-Jie;Choi, Young-Ji;Wang, Xiao-Yong
    • Journal of Industrial Technology
    • /
    • v.41 no.1
    • /
    • pp.1-6
    • /
    • 2021
  • Fly ash and silica fume belong to industry by-products that can be used to produce concrete. This study shows the model of a neural network to evaluate the strength development of blended concrete containing fly ash and silica fume. The neural network model has four input parameters, such as fly ash replacement content, silica fume replacement content, water/binder ratio, and ages. Strength is the output variable of neural network. Based on the backpropagation algorithm, the values of elements in the hidden layer of neural network are determined. The number of neurons in the hidden layer is confirmed based on trial calculations. We find (1) neural network can give a reasonable evaluation of the strength development of composite concrete. Neural network can reflect the improvement of strength due to silica fume additions and can consider the reductions of strength as water/binder increases. (2) When the number of neurons in the hidden layer is five, the prediction results show more accuracy than four neurons in the hidden layer. Moreover, five neurons in the hidden layer can reproduce the strength crossover between fly ash concrete and plain concrete. Summarily, the neural network-based model is valuable for design sustainable composite concrete containing silica fume and fly ash.

Study of geotechnical properties of a gypsiferous soil treated with lime and silica fume

  • Moayyeri, Neda;Oulapour, Masoud;Haghighi, Ali
    • Geomechanics and Engineering
    • /
    • v.17 no.2
    • /
    • pp.195-206
    • /
    • 2019
  • The gypsiferous soils are significantly sensitive to moisture and the water has a severe destructive effect on them. Therefore, the effect of lime and silica fume addition on their mechanical properties, when subjected to water, is investigated. Gypsiferous soil specimens were mixed with 1, 2 and 3% lime and 1, 3, 5 and 7% silica fume, in terms of the dry weight of soil. The specimens were mixed at optimum moisture content and cured for 24 hours, 7 and 28 days. 86 specimens in the sizes of unconfined compression strength test mold were prepared to perform unconfined compressive strength and durability tests. The results proved that adding even 1% of each of these additives can lead to a 15 times increase in unconfined compressive strength, compared with untreated specimen, and this increases as the curing time is prolonged. Also, after soaking, the compressive strength of the specimens stabilized with 2 and 3% lime plus different percentages of silica fume was considerably higher than before soaking. The durability of the treated specimens increased significantly after soaking. Direct shear tests showed that lime treatment is more efficient than silica fume treatment. Moreover, it is concluded that the initial tangent modulus and the strain at failure increased as the normal stress of the test was increased. Also, the higher lime contents, up to certain limits, increase the shear strength. Therefore, simultaneous use of lime and silica fume is recommended to improve the geotechnical properties of gypsiferous soils.

Mechanical properties and durability of self consolidating cementitious materials incorporating nano silica and silica fume

  • Mahdikhani, Mahdi;Ramezanianpour, Ali Akbar
    • Computers and Concrete
    • /
    • v.14 no.2
    • /
    • pp.175-191
    • /
    • 2014
  • In recent years, the emergence of nanotechnology and nanomaterial has created hopes to improve various properties of concrete. Nano silica as one of these materials has been introduced as a cement replacement material for concrete mixture in construction applications. It can modify the properties of concrete, due to high pozzolanic reactions and also making a denser microstructure. On the other hand, it is well recognized that the use of mineral admixtures such as silica fume affects the mechanical properties and durability of cementitious materials. In addition, the superior performance of self-consolidating concrete (SCC) and self-consolidating mortars (SCM) over conventional concrete is generally related to their ingredients. This study investigates the effect of nano silica and silica fume on the compressive strength and chloride permeability of self-consolidating mortars. Tests include compressive strength, rapid chloride permeability test, water permeability, capillary water absorption, and surface electrical resistance, which carried out on twenty mortar mixtures containing zero to 6 percent of nano silica and silica fume. Results show that SCMs incorporating nano silica had higher compressive strength at various ages. In addition, results show that nano silica has enhanced the durability SCMs and reduced the chloride permeability.

ASR Resistance of Ternary Cementitious Systems Containing Silica Fume-Fly Ash Using Modified ASTM C 1260 Method

  • Shon, Chang-Seon;Kim, Young-Su;Jeong, Jae-Dong
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.497-503
    • /
    • 2003
  • Supplementary cementitious materials (SCM) such as fly ash, ground granulated blast furnace slag and silica fume are now being extensively used in concrete to control expansion due to alkali-silica reactivity (ASR). However, the replacement level of a single SCM needed to deleterious ASR expansion and cracking may create other problem and concerns. For example, incorporating silica fume at levels greater than 10% by mass of cement may lead to dispersion and workability concerns, while fly ash can lead to poor strength development at early age, The combination of silica fume and fly ash in ternary cementitious system may alleviate this and other concerns, and result in a number of synergistic effects. The aim of the study was to enable evaluation of more realistic suitability of a silica fume-fly ash combination system for ASR resistance based on an in-house modification of ASTM C 1260 test method. The modification can be more closely identified with actual field conditions. In this study three different strengths of NaOH test solution(1N, 0.5N, and 0.25N) were used to measure the expansion characteristics of mortar bar made with a reactive aggregate. The other variable included longer testing period of 28 days instead of a conventional 14 days.