• Title/Summary/Keyword: Silica filler

Search Result 218, Processing Time 0.025 seconds

Charge-Discharge Characteristics of Lithium Metal Polymer Battery Adopting PVdF-HFP/(SiO2, TiO2) Polymer Electrolytes Prepared by Phase Inversion Technique (상반전 기법으로 제조한 PVdF-HFP/(SiO2, TiO2) 고분자 전해질을 채용한 리튬금속 고분자 2차전지의 충방전 특성)

  • Kim, Jin-Chul;Kim, Kwang-Man
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.131-136
    • /
    • 2008
  • Silica- or titania-filled poly (vinylidene fluoride-co-hexafluoropropylene)-based polymer electrolytes were prepared by phase inversion technique using N-methyl-2-pyrrolidone and dimethyl acetamide as solvent and water as non-solvent. The polymer electrolytes were adopted to the lithium metal polymer battery using high-capacity cathode $Li[Ni_{0.15}Co_{0.10}Li_{0.20}Mn_{0.55}]O_2$ and lithium metal anode. After the repeated charge-discharge test for the cell, it was proved that the cell adopting the polymer electrolyte based on the phase-inversion membrane containing 40~50 wt% silica showed the highest discharge capacity (180 mAh/g) until 80th cycle and then abrupt capacity fade was just followed. The capacity fade might be due to the deposition of lithium dendrite on the polymer electrolyte, in which the capacity retention was no longer sustainable.

Quantitative Determination of Cristobalite Content in Diatomite and Filtered Food (규조토와 여과식품 중 크리스토발라이트의 정량분석)

  • Jeong, Gi Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.4
    • /
    • pp.313-321
    • /
    • 2019
  • Diatomite is a silicic porous sedimentary rock composed of diatom frustules, used for filtration aid, filler, absorbent, abrasive, carrier, insulator, and fertilizer. During the calcination of diatomite to improve physical properties for filtration-aid application, amorphous silica is transformed to cristobalite. X-ray diffraction and scanning electron microscopy studies were carried out for 17 diatomite samples, showing that 16 diatomite samples contain cristobalite in the range of 6~100 %. Concentration of respirable cristobalite in air is regulated as harmful substances, but the residual cristobalite in food is treated as generally safe substance. The determination procedure of cristobalite content in food was established for managing food safety. Calibration curve of cristobalite filtered on silver membrane were obtained by X-ray diffraction. The lower limit of quantification was evaluated as 2.7 mg. The cristobalite was not detected in the analyses of selected food samples using the established procedure.

The Characteristics of Viscosity Behavior of EMC for Semi-conductor Encapsulant -The Prediction of Viscosity by Mooney Equation- (반도체 봉지제용 EMC의 점도거동 특성 연구 -Mooney식을 이용한 점도예측-)

  • Kim, In Beom;Bae, Doo Han;Lee, Myung Cheon;Lee, Euy Soo;Yun, Hyo Chang;Lim, Jong Chan
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.949-953
    • /
    • 1999
  • Because epoxy molding compound(EMC) for semi-conductor encapsulants contains high concentrations of fillers, its flow behaviors are affected much by the concentrations and properties of those fillers. This paper reports the effects of a filler concentration, shape, size, and size distributions on the viscosity behavior of EMC(epoxy/silica). In addition, the prediction of viscosity behavior was performed using the Mooney equation. The maximum packing volume in the Mooney equation was calculated by Ouchiyama's packing model and Taguchi's optimization method, while the shpae factor was determined by fitting the experimental data. The results showed that the Mooney equation predicted the viscosity behavior of EMC very well.

  • PDF

New Micropolymer Technologies for Increased Drainage and Retention for both Wood and Non-Wood Containing Furnishes (목질 및 비목질 함유 지료의 탈수속도와 보류향상을 위한 새로운 마이크로폴리머 기술)

  • Lewis, Christopher;Polverari, Marco
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2008.05a
    • /
    • pp.1-46
    • /
    • 2008
  • The ability to control filler performance and fines retention is vital in the development of both filled and non filled grades, respectively. This is very important when achieving the desired sheet structure necessary to maximize machine performance and end user demands. A narrow balance exists in attaining the desired retention and formation particularly in systems with heavier ash loads and producing paper and paper board on higher speed high shear equipment. A new generation of both cationic and anionic micropolymer technologies has been developed. These water based chemistries are volatile organic compound (VOC) and alkyphenol ethoxylate (APE) free. When these novel micropolymers are applied with linear poly-acrylamide or in conjunction with inorganic microparticle technologies (such as silica or swellable minerals), substantial increases in drainage, fibre retention and ash retention are observed. These improvements have been observed not only in high filled wood and non wood containing grades such as fine paper and super calendared sheets (SCA), but also in low filled newsprint grades. Of particular note is the drainage improvement seen with the application of the cationic micropolymers in unbleached packaging grades with poly-acrylamide.

  • PDF

A Study on the Physical Properties of Reinforcing Fillers with Dual Phase Structure (이중상 구조를 가진 보강성 충전제의 물리적 특성 연구)

  • Lee, Seag;Park, Nam Cook
    • Applied Chemistry for Engineering
    • /
    • v.9 no.4
    • /
    • pp.608-613
    • /
    • 1998
  • The purpose of this experiment was the physical properties of rubber compounds with DPCB and pure carbon black. Si-O peak in the silcia surface was observed at the range of wavenumber from 1,100 to 1,200 in the DPCB by FT-IR analysis. Cure rate of rubber compounds containing DPCB and organic silane coupling agent were (Si69) delayed compared with those containing pure carbon black. 300% modulus and interaction coefficient of DPCB with silane coupling agent were higher than those of pure carbon black and PICO weight loss amount showed constant value. It was found that $0^{\circ}C$ tan$\delta$ of rubber compounds with DPCB was larger than those of pure carbon black at 2.0% silane coupling agent based on 50 phr DPCB and $60^{\circ}C$ tan$\delta$ of rubber compounds with DPCB decreased as increasing the usage coupling agent. Consequently, it is postulated that DPCB is strong candidate material for lowering rolling resistance under constant abrasion resistance.

  • PDF

New Engineering Techniques for Carbon Master Batch (탄소 마스터배치를 위한 새로운 엔지니어링 기술)

  • Pyo, Sang-Gil;Kang, Chang-Gi;Kim, Ki-Seok;Park, Soo-Jin
    • Elastomers and Composites
    • /
    • v.48 no.2
    • /
    • pp.125-132
    • /
    • 2013
  • In this work, we have discussed new engineering systems for preparing carbon master batch composed by carbon black and various organic compounds. In general, polymer resin, which applied for automobile tire, household items, and various industry items, is used with the fillers including carbon black and silica to control the color or properties. Domestic part and material industry has been remarkably developed in that the development of materials including the compounding of raw materials. Meanwhile, the engineering technique for mass production has not reached to a requirement of industry due to slow technique development and high dependence on foreign. Thus, we will focus on the introduction of new engineering technique developed by domestic company for preparing carbon master batch.

Advanced Synthetic Technology for High Performance Energy Tire Tread Rubber (고성능 에너지 절약형 타이어 트레드 고무의 합성 제조 기술)

  • Lee, Bum-Jae;Lim, Ki-Won;Ji, Sang-Chul;Jung, Kwon-Young;Kim, Tae-Jung
    • Elastomers and Composites
    • /
    • v.44 no.3
    • /
    • pp.232-243
    • /
    • 2009
  • The specialized and diversified synthetic and compounding technologies are used to meet the requirements for the advanced high performance tire tread materials with better balance of fuel economy(rolling resistance), safety(wet traction) and wear resistance. These techniques involve the methodology for the improvement of chemical and physical interaction between filler and the rubber matrix using coupling agents as well as a variety of chemically-modified solution SBRs. The research trends about the high performance functional SBRs and coupling agents which can interact with the surface of fillers and their working mechanism were investigated in the conventional carbon black-filled rubber and silica-filled SBR systems developed recently as "green tire".

Determination of Strain Energy Function of Rubber Materials Considering Stress Softening Behavior (응력연화거동을 고려한 고무 재료의 변형률 에너지 함수 결정)

  • Kim, W.S.;Hong, S.I.
    • Elastomers and Composites
    • /
    • v.42 no.3
    • /
    • pp.168-176
    • /
    • 2007
  • When the rubber vulcanizates reinforced with carbon black or silica are subjected to cyclic loading from its virgin state, the stress required on reloading is less than that on the initial loading. This stress softening phenomenon is referred to as the Mullins effect. The strain energy function of rubber vulcanizates was investigated using theory of pseudo-elasticity incorporated damage parameter that Ogden and Roxburgh have proposed to describe the damage-induced stress softening effect in rubber-like solids. The quasi-static cyclic loading test was performed using the NR-SBR vulcanizates reinforced with carbon black, and then the effect of a damage parameter to stress-strain curve in reloading and subsequent reloading paths was studied. The strain energy function of the rubber vulcanizates with a different filler content was also evaluated.

Study on the Reliability of COB Flip Chip Package using NCP (NCP 적용 COB 플립칩 패키지의 신뢰성 연구)

  • Lee, So-Jeong;Yoo, Se-Hoon;Lee, Chang-Woo;Lee, Ji-Hwan;Kim, Jun-Ki
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.3
    • /
    • pp.25-29
    • /
    • 2009
  • High temperature high humidity and thermal shock reliability tests were performed for the board level COB(chip-on-board) flip chip packages using self-formulated and commercial NCPs(non-conductive pastes) to ensure the performance of NCP flip chip packages. It was considered that the more smaller fused silica filler in prototype NCPs is more favorable for high temperature high humidity reliability. The failure of NCP interconnection was affected by the expansion of epoxy due to moisture absorption rather than the fatigue due to thermal stress. It was considered that the NCP having more higher adhesive strength seems to be more favorable to increase the thermal shock reliability.

  • PDF

Thermal properties and mechanical properties of dielectric materials for thermal imprint lithography

  • Kwak, Jeon-Bok;Cho, Jae-Choon;Ra, Seung-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.242-242
    • /
    • 2006
  • Increasingly complex tasks are performed by computers or cellular phone, requiring more and more memory capacity as well as faster and faster processing speeds. This leads to a constant need to develop more highly integrated circuit systems. Therefore, there have been numerous studies by many engineers investigating circuit patterning. In particular, PCB including module/package substrates such as FCB (Flip Chip Board) has been developed toward being low profile, low power and multi-functionalized due to the demands on miniaturization, increasing functional density of the boards and higher performances of the electric devices. Imprint lithography have received significant attention due to an alternative technology for photolithography on such devices. The imprint technique. is one of promising candidates, especially due to the fact that the expected resolution limits are far beyond the requirements of the PCB industry in the near future. For applying imprint lithography to FCB, it is very important to control thermal properties and mechanical properties of dielectric materials. These properties are very dependent on epoxy resin, curing agent, accelerator, filler and curing degree(%) of dielectric materials. In this work, the epoxy composites filled with silica fillers and cured with various accelerators having various curing degree(%) were prepared. The characterization of the thermal and mechanical properties wasperformed by thermal mechanical analysis (TMA), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), rheometer, an universal test machine (UTM).

  • PDF