• Title/Summary/Keyword: Silence speech interface

Search Result 4, Processing Time 0.021 seconds

Speech synthesis using acoustic Doppler signal (초음파 도플러 신호를 이용한 음성 합성)

  • Lee, Ki-Seung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.2
    • /
    • pp.134-142
    • /
    • 2016
  • In this paper, a method synthesizing speech signal using the 40 kHz ultrasonic signals reflected from the articulatory muscles was introduced and performance was evaluated. When the ultrasound signals are radiated to articulating face, the Doppler effects caused by movements of lips, jaw, and chin observed. The signals that have different frequencies from that of the transmitted signals are found in the received signals. These ADS (Acoustic-Doppler Signals) were used for estimating of the speech parameters in this study. Prior to synthesizing speech signal, a quantitative correlation analysis between ADS and speech signals was carried out on each frequency bin. According to the results, the feasibility of the ADS-based speech synthesis was validated. ADS-to-speech transformation was achieved by the joint Gaussian mixture model-based conversion rules. The experimental results from the 5 subjects showed that filter bank energy and LPC (Linear Predictive Coefficient) cepstrum coefficients are the optimal features for ADS, and speech, respectively. In the subjective evaluation where synthesized speech signals were obtained using the excitation sources extracted from original speech signals, it was confirmed that the ADS-to-speech conversion method yielded 72.2 % average recognition rates.

A Study on Embedded DSP Implementation of Keyword-Spotting System using Call-Command (호출 명령어 방식 핵심어 검출 시스템의 임베디드 DSP 구현에 관한 연구)

  • Song, Ki-Chang;Kang, Chul-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.9
    • /
    • pp.1322-1328
    • /
    • 2010
  • Recently, keyword spotting system is greatly in the limelight as UI(User Interface) technology of ubiquitous home network system. Keyword spotting system is vulnerable to non-stationary noises such as TV, radio, dialogue. Especially, speech recognition rate goes down drastically under the embedded DSP(Digital Signal Processor) environments because it is relatively low in the computational capability to process input speech in real-time. In this paper, we propose a new keyword spotting system using the call-command method, which is consisted of small number of recognition networks. We select the call-command such as 'narae', 'home manager' and compose the small network as a token which is consisted of silence with the noise and call commands to carry the real-time recognition continuously for input speeches.

Estimating speech parameters for ultrasonic Doppler signal using LSTM recurrent neural networks (LSTM 순환 신경망을 이용한 초음파 도플러 신호의 음성 패러미터 추정)

  • Joo, Hyeong-Kil;Lee, Ki-Seung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.4
    • /
    • pp.433-441
    • /
    • 2019
  • In this paper, a method of estimating speech parameters for ultrasonic Doppler signals reflected from the articulatory muscles using LSTM (Long Short Term Memory) RNN (Recurrent Neural Networks) was introduced and compared with the method using MLP (Multi-Layer Perceptrons). LSTM RNN were used to estimate the Fourier transform coefficients of speech signals from the ultrasonic Doppler signals. The log energy value of the Mel frequency band and the Fourier transform coefficients, which were extracted respectively from the ultrasonic Doppler signal and the speech signal, were used as the input and reference for training LSTM RNN. The performance of LSTM RNN and MLP was evaluated and compared by experiments using test data, and the RMSE (Root Mean Squared Error) was used as a measure. The RMSE of each experiment was 0.5810 and 0.7380, respectively. The difference was about 0.1570, so that it confirmed that the performance of the method using the LSTM RNN was better.

Implementation of the Automatic Segmentation and Labeling System (자동 음성분할 및 레이블링 시스템의 구현)

  • Sung, Jong-Mo;Kim, Hyung-Soon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.5
    • /
    • pp.50-59
    • /
    • 1997
  • In this paper, we implement an automatic speech segmentation and labeling system which marks phone boundaries automatically for constructing the Korean speech database. We specify and implement the system based on conventional speech segmentation and labeling techniques, and also develop the graphic user interface(GUI) on Hangul $Motif^{TM}$ environment for the users to examine the automatic alignment boundaries and to refine them easily. The developed system is applied to 16kHz sampled speech, and the labeling unit is composed of 46 phoneme-like units(PLUs) and silence. The system uses both of the phonetic and orthographic transcription as input methods of linguistic information. For pattern-matching method, hidden Markov models(HMM) is employed. Each phoneme model is trained using the manually segmented 445 phonetically balanced word (PBW) database. In order to evaluate the performance of the system, we test it using another database consisting of sentence-type speech. According to our experiment, 74.7% of phoneme boundaries are within 20ms of the true boundary and 92.8% are within 40ms.

  • PDF