• 제목/요약/키워드: Silence speech interface

검색결과 4건 처리시간 0.02초

초음파 도플러 신호를 이용한 음성 합성 (Speech synthesis using acoustic Doppler signal)

  • 이기승
    • 한국음향학회지
    • /
    • 제35권2호
    • /
    • pp.134-142
    • /
    • 2016
  • 본 논문에서는 40 kHz 초음파 신호를 입 주변에 쏘고, 되돌아오는 초음파 신호를 이용해 음성신호를 합성하는 방법을 소개하고 성능을 평가하였다. 발성하고 있는 입주변에 초음파를 방사하게 되면, 입술, 턱, 뺨 등의 움직임으로 인한 변위로 도플러 현상이 발생하고, 이에 따라 반사 신호에는 본래의 주파수 성분과는 다른 도플러 주파수가 관찰되는데, 본 논문에서는 이러한 도플러 주파수를 이용하여 음성 파라메터를 추정하도록 하였다. 음성합성에 앞서서 초음파 도플러 신호와 음성 신호 간의 상관관계를 각 주파수 별로 분석하였으며, 이로부터 초음파 도플러 신호를 이용한 음성 신호의 합성 가능성을 살펴보았다. 변환에는 초음파 도플러의 정적, 동적 특성을 함께 반영한 특징 변수를 사용하였으며 결합-혼합 가우시안 기법을 이용하여 음성 파라메터로 변환하였다. 5명의 피 실험자를 이용한 음성 합성 실험에서 필터뱅크 에너지 값을 초음파신호의 특징변수로, LPC(Linear Predictive Coefficient) 켑스트럼 계수를 음성 변수로 사용하는 경우 가장 우수한 변환 성능을 나타내었다. 음성신호에서 추출한 여기신호를 이용하여 합성음을 생성하고, 이를 청취하였을 때 72.2 %의 평균 인식율이 얻어짐을 확인할 수 있었다.

호출 명령어 방식 핵심어 검출 시스템의 임베디드 DSP 구현에 관한 연구 (A Study on Embedded DSP Implementation of Keyword-Spotting System using Call-Command)

  • 송기창;강철호
    • 한국멀티미디어학회논문지
    • /
    • 제13권9호
    • /
    • pp.1322-1328
    • /
    • 2010
  • 최근 핵심어 검출 시스템은 유비쿼터스 홈네트워크의 UI(User Interface) 기술로써 각광받고 있다. 핵심어 검출 시스템은 TV, 라디오, 떠드는 소리 등과 같은 동적 생활 잡음에 매우 취약하다. 특히, 실제 임베디드 DSP(Digital Signal Processor) 환경에서는 상대적으로 CPU(Central Processing Unit) 연산능력이 떨어지므로, 실시간으로 입력되는 음성을 인식하기가 어려워 인식율은 급격히 하락하게 된다. 본 논문은 임베디드 DSP 환경에서 원활한 연속음성인식을 수행하기 위하여 '나래야', '홈매니저'등과 같은 호출명령어를 선정하고 잡음을 포함한 묵음구간과 호출명령어로 구성된 최소의 인식네트워크를 토큰으로 구성하여 입력된 음성에 대해 실시간 음성인식을 계속적으로 수행한다.

LSTM 순환 신경망을 이용한 초음파 도플러 신호의 음성 패러미터 추정 (Estimating speech parameters for ultrasonic Doppler signal using LSTM recurrent neural networks)

  • 주형길;이기승
    • 한국음향학회지
    • /
    • 제38권4호
    • /
    • pp.433-441
    • /
    • 2019
  • 본 논문에서는 입 주변에 방사한 초음파 신호가 반사되어 돌아올 때 발생하는 초음파 도플러 신호를 LSTM(Long Short Term Memory) 순환 신경망 (Recurrent Neural Networks, RNN)을 이용해 음성 패러미터를 추정하는 방법을 소개하고 다층 퍼셉트론 (Multi-Layer Perceptrons, MLP) 신경망을 이용한 방법과 성능 비교를 하였다. 본 논문에서는 LSTM 순환 신경망을 이용해 초음파 도플러 신호로부터 음성 신호의 푸리에 변환 계수를 추정하였다. LSTM 순환 신경망을 학습하기 위한 입력 및 기준값으로 초음파 도플러 신호와 음성 신호로부터 각각 추출된 멜 주파수 대역별 에너지 로그값과 푸리에 변환 계수가 사용되었다. 테스트 데이터를 이용한 실험을 통해 LSTM 순환 신경망과 MLP의 성능을 평가, 비교하였고 척도로는 평균 제곱근 오차(Root Mean Squared Error, RMSE)가 사용되었다.각 실험의 RMSE는 각각 0.5810, 0.7380로 나타났다. 약 0.1570 차이로 LSTM 순환 신경망을 이용한 방법의 성능 우세한 것으로 확인되었다.

자동 음성분할 및 레이블링 시스템의 구현 (Implementation of the Automatic Segmentation and Labeling System)

  • 성종모;김형순
    • 한국음향학회지
    • /
    • 제16권5호
    • /
    • pp.50-59
    • /
    • 1997
  • 본 논문에서는 한국어 음성 데이터베이스 구축을 위하여 자동으로 음소경계를 추출하는 자동 음성분할 및 레이블링 시스템을 구현하였다. 기존의 음성분할 및 레이블링 기술을 근간으로 본 시스템을 구현하였으며, 또한 사용자가 자동분할된 음소경계를 확인하여 그 경계를 쉽게 수정할 수 있도록 한글 모티프 환경에서 그래픽 사용자 인터페이스를 개발하였다. 개발된 시스템은 16kHz로 샘플링된 음성을 대상으로 하고 있으며, 레이블링 단위는 45개의 유사음소와 하나의 묵음으로 구성하였다. 그리고 언어학적 정보의 입력방식으로는 음소표기와 철자표기를 사용하였으며, 패턴매칭 방법으로는 hidden Markov model(HMM)을 이용하였다. 개발된 시스템의 각 음소 모델은 수작업에 의해서 음소단위로 분할한 음성학적으로 균형잡힌 445 단어 데이터베이스를 이용해서 훈련되었다. 그리고 본 시스템의 성능평가를 위해 훈련에 사용되지 않는 문장 데이터베이스에 대해서 자동 음성분할 실험을 수행하였다. 실험결과, 수작업에 의해서 분할된 음소경계위치와의 오차가 20ms 이내인 것이 74.7%였으며, 40ms이내에는 92.8%가 포함되었다.

  • PDF