• Title/Summary/Keyword: Signature Sampling

Search Result 20, Processing Time 0.032 seconds

On-line Faults Signature Monitoring Tool for Induction Motor Diagnosis

  • Medoued, Ammar;Lebaroud, Abdesselem;Boukadoum, Ahcene;Clerc, Guy
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.140-145
    • /
    • 2010
  • The monitoring and the diagnosis of the faults in induction motors starting from the stator current are very interesting, since it is an accessible and measurable quantity. The spectral analysis of the stator current makes it possible to highlight the characteristic frequencies of the faults but in a wide frequency range depending on half the sampling frequency, making it very difficult to monitor on-line the faults. In order to facilitate the use of the relevant frequencies of machine faults we proposed the extraction of the frequency components using two methods, namely, the amplitude and the instantaneous frequency. The theoretical bases of these methods were presented and the results were validated on a test bench with an induction motor of 5.5 kw.

Optimization Trends of the Falcon Digital Signature Algorithm (FALCON 전자서명 알고리즘의 최적화 동향)

  • Gyu Sup Lee;Seong-Min Cho;Seung-Hyun Seo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.40-43
    • /
    • 2023
  • FALCON 알고리즘은 격자기반 서명 체계로 서명 길이 및 공개키가 짧고, 서명 생성/검증 속도가 빠르다는 장점이 있다. 하지만 Fast Fourier Transform(FFT), discrete Gaussian sampling과 같은 리소스가 많이 사용되는 연산이 활용되기 때문에 최적화 연구가 필요하다. 최근에는 병렬처리 및 파이프라인 기법을 활용할 수 있는 하드웨어를 통한 최적화 및 ARM 아키텍쳐의 병렬 처리 유닛을 활용하고 메모리 접근 방식을 최소화하는 방법들이 연구되고 있다. 이에 본 논문에서는 FALCON 알고리즘 대상 최적화 연구 동향과 그 결과를 분석하고 향후 추가적으로 필요한 FALCON 최적화 구현 방안에 대해서 기술한다.

A Study on Efficient Signing Methods and Optimal Parameters Proposal for SeaSign Implementation (SeaSign에 대한 효율적인 서명 방법 및 최적 파라미터 제안 연구)

  • Suhri Kim
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.2
    • /
    • pp.167-177
    • /
    • 2024
  • This paper proposes optimization techniques for SeaSign, an isogeny-based digital signature algorithm. SeaSign combines class group actions of CSIDH with the Fiat-Shamir with abort. While CSIDH-based algorithms have regained attention due to polynomial time attacks for SIDH-based algorithms, SeaSiogn has not undergone significat optimization because of its inefficiency. In this paper, an efficient signing method for SeaSign is proposed. The proposed signing method is simple yet powerful, achived by repositioning the rejection sampling within the algorithm. Additionally, this paper presnts parameters that can provide optimal performance for the proposed algorithm. As a result, by using the original parameters of SeaSign, the proposed method is three times faster than the original SeaSign. Additonally, combining the newly suggested parameters with the signing method proposed in this paper yields a performance that is 290 times faster than the original SeaSign and 7.47 times faster than the method proposed by Decru et al.

Uncertainty Calculation Algorithm for the Estimation of the Radiochronometry of Nuclear Material (핵물질 연대측정을 위한 불확도 추정 알고리즘 연구)

  • JaeChan Park;TaeHoon Jeon;JungHo Song;MinSu Ju;JinYoung Chung;KiNam Kwon;WooChul Choi;JaeHak Cheong
    • Journal of Radiation Industry
    • /
    • v.17 no.4
    • /
    • pp.345-357
    • /
    • 2023
  • Nuclear forensics has been understood as a mendatory component in the international society for nuclear material control and non-proliferation verification. Radiochronometry of nuclear activities for nuclear forensics are decay series characteristics of nuclear materials and the Bateman equation to estimate when nuclear materials were purified and produced. Radiochronometry values have uncertainty of measurement due to the uncertainty factors in the estimation process. These uncertainties should be calculated using appropriate evaluation methods that are representative of the accuracy and reliability. The IAEA, US, and EU have been researched on radiochronometry and uncertainty of measurement, although the uncertainty calculation method using the Bateman equation is limited by the underestimation of the decay constant and the impossibility of estimating the age of more than one generation, so it is necessary to conduct uncertainty calculation research using computer simulation such as Monte Carlo method. This highlights the need for research using computational simulations, such as the Monte Carlo method, to overcome these limitations. In this study, we have analyzed mathematical models and the LHS (Latin Hypercube Sampling) methods to enhance the reliability of radiochronometry which is to develop an uncertainty algorithm for nuclear material radiochronometry using Bateman Equation. We analyzed the LHS method, which can obtain effective statistical results with a small number of samples, and applied it to algorithms that are Monte Carlo methods for uncertainty calculation by computer simulation. This was implemented through the MATLAB computational software. The uncertainty calculation model using mathematical models demonstrated characteristics based on the relationship between sensitivity coefficients and radiative equilibrium. Computational simulation random sampling showed characteristics dependent on random sampling methods, sampling iteration counts, and the probability distribution of uncertainty factors. For validation, we compared models from various international organizations, mathematical models, and the Monte Carlo method. The developed algorithm was found to perform calculations at an equivalent level of accuracy compared to overseas institutions and mathematical model-based methods. To enhance usability, future research and comparisons·validations need to incorporate more complex decay chains and non-homogeneous conditions. The results of this study can serve as foundational technology in the nuclear forensics field, providing tools for the identification of signature nuclides and aiding in the research, development, comparison, and validation of related technologies.

Performance of Multi-rate Optical Wireless PPM-CDMA System over an Indoor Non-directed Diffuse Channel (실내 비방향성 분산채널에서 다중전송률 광무선 PPM-CDMA 시스템의 성능 분석)

  • 황성수;이재홍
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.7A
    • /
    • pp.943-950
    • /
    • 2000
  • In this paper, an asynchronous multi-rate optical wireless pulse position modulation-code division multiple access (PPM-CDMA) is proposed for an indoor non-directed diffuse channel. As a signature sequence for CDMA, an optical orthogonal code (OOC) is used and an interference cancellation scheme is applied to improve the bit error rate. It is known that the optical PPM-CDMA has advantages due to its power efficiency. Moreover, it provides multi-rate services by varying the modulation level with fixed pulse duration. In the proposed multi-rate PPM-CDMA system with fixed pulse duration, chip rate and sampling time do not change for each transmission rate and this simplifies overall system structure.

  • PDF

Population Genetic Structure and Evidence of Demographic Expansion of the Ayu (Plecoglossus altivelis) in East Asia

  • Kwan, Ye-Seul;Song, Hye-Kyung;Lee, Hyun-Jung;Lee, Wan-Ok;Won, Yong-Jin
    • Animal Systematics, Evolution and Diversity
    • /
    • v.28 no.4
    • /
    • pp.279-290
    • /
    • 2012
  • Plecoglossus altivelis (ayu) is an amphidromous fish widely distributed in Northeastern Asia from the East China Sea to the northern Japanese coastal waters, encompassing the Korean Peninsula within its range. The shore lines of northeastern region in Asia have severely fluctuated following glaciations in the Quaternary. In the present study, we investigate the population genetic structure and historical demographic change of P. altivelis at a population level in East Asia. Analysis of molecular variance (AMOVA) based on 244 mitochondrial control region DNA sequences clearly showed that as the sampling scope extended to a larger geographic area, genetic differentiation began to become significant, particularly among Northeastern populations. A series of hierarchical AMOVA could detect the genetic relationship of three closely located islands between Korea and Japan that might have been tightly connected by the regional Tsushima current. Neutrality and mismatch distribution analyses revealed a strong signature of a recent population expansion of P. altivelis in East Asia, estimated at 126 to 391 thousand years ago during the late Pleistocene. Therefore it suggests that the present population of P. altivelis traces back to its approximate demographic change long before the last glacial maximum. This contrasts our a priori expectation that the most recent glacial event might have the most crucial effect on the present day demography of marine organisms through bottleneck and subsequent increase of effective population size in this region.

Prediction of Fluid-borne Noise Transmission Using AcuSolve and OptiStruct

  • Barton, Michael;Corson, David;Mandal, Dilip;Han, Kyeong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.557-561
    • /
    • 2014
  • In this work, Altair Engineering's vibroacoustic modeling approach is used to simulate the acoustic signature of a simplified automobile in a wind tunnel. The modeling approach relies on a two step procedure involving simulation and extraction of acoustic sources using a high fidelity Computational Fluid Dynamics (CFD) simulation followed by propagation of the acoustic energy within the structure and passenger compartment using a structural dynamics solver. The tools necessary to complete this process are contained within Altair's HyperWorks CAE software suite. The CFD simulations are performed using AcuSolve and the structural simulations are performed using OptiStruct. This vibroacoustics simulation methodology relies on calculation of the acoustic sources from the flow solution computed by AcuSolve. The sources are based on Lighthill's analogy and are sampled directly on the acoustic mesh. Once the acoustic sources have been computed, they are transformed into the frequency domain using a Fast Fourier Transform (FFT) with advanced sampling and are subsequently used in the structural acoustics model. Although this approach does require the CFD solver to have knowledge of the acoustic simulation domain a priori, it avoids modeling errors introduced by evaluation of the acoustic source terms using dissimilar meshes and numerical methods. The aforementioned modeling approach is demonstrated on the Hyundai Simplified Model (HSM) geometry in this work. This geometry contains flow features that are representative of the dominant noise sources in a typical automobile design; namely vortex shedding from the passenger compartment A-pillar and bluff body shedding from the side view mirrors. The geometry also contains a thick poroelastic material on the interior that acts to reduce the acoustic noise. This material is modeled using a Biot material formulation during the structural acoustic simulation. Successful prediction of the acoustic noise within the HSM geometry serves to validate the vibroacoustic modeling approach for automotive applications.

  • PDF

Rethinking of the Uncertainty: A Fault-Tolerant Target-Tracking Strategy Based on Unreliable Sensing in Wireless Sensor Networks

  • Xie, Yi;Tang, Guoming;Wang, Daifei;Xiao, Weidong;Tang, Daquan;Tang, Jiuyang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.6
    • /
    • pp.1496-1521
    • /
    • 2012
  • Uncertainty is ubiquitous in target tracking wireless sensor networks due to environmental noise, randomness of target mobility and other factors. Sensing results are always unreliable. This paper considers unreliability as it occurs in wireless sensor networks and its impact on target-tracking accuracy. Firstly, we map intersection pairwise sensors' uncertain boundaries, which divides the monitor area into faces. Each face has a unique signature vector. For each target localization, a sampling vector is built after multiple grouping samplings determine whether the RSS (Received Signal Strength) for a pairwise nodes' is ordinal or flipped. A Fault-Tolerant Target-Tracking (FTTT) strategy is proposed, which transforms the tracking problem into a vector matching process that increases the tracking flexibility and accuracy while reducing the influence of in-the-filed factors. In addition, a heuristic matching algorithm is introduced to reduce the computational complexity. The fault tolerance of FTTT is also discussed. An extension of FTTT is then proposed by quantifying the pairwise uncertainty to further enhance robustness. Results show FTTT is more flexible, more robust and more accurate than parallel approaches.

Improved Network Intrusion Detection Model through Hybrid Feature Selection and Data Balancing (Hybrid Feature Selection과 Data Balancing을 통한 효율적인 네트워크 침입 탐지 모델)

  • Min, Byeongjun;Ryu, Jihun;Shin, Dongkyoo;Shin, Dongil
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.2
    • /
    • pp.65-72
    • /
    • 2021
  • Recently, attacks on the network environment have been rapidly escalating and intelligent. Thus, the signature-based network intrusion detection system is becoming clear about its limitations. To solve these problems, research on machine learning-based intrusion detection systems is being conducted in many ways, but two problems are encountered to use machine learning for intrusion detection. The first is to find important features associated with learning for real-time detection, and the second is the imbalance of data used in learning. This problem is fatal because the performance of machine learning algorithms is data-dependent. In this paper, we propose the HSF-DNN, a network intrusion detection model based on a deep neural network to solve the problems presented above. The proposed HFS-DNN was learned through the NSL-KDD data set and performs performance comparisons with existing classification models. Experiments have confirmed that the proposed Hybrid Feature Selection algorithm does not degrade performance, and in an experiment between learning models that solved the imbalance problem, the model proposed in this paper showed the best performance.

A Preliminary Assessment of Groundwater Chemistry for Agricultural Water Supply in the Mangyeong-Dongjin Watershed (만경-동진강 유역 지하수의 화학적 특성에 대한 농업용수 측면의 예비적 평가)

  • Choi, Hanna;Kwon, Hong-Il;Yoon, Yoon-Yeol;Kim, Yongcheol;Koh, Dong-Chan
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.1
    • /
    • pp.65-75
    • /
    • 2021
  • We investigated hydrochemical and stable isotope characteristics of groundwater in a large agricultural plain, the Honam plain, to evaluate the adequacy of agricultural water supply. For preliminary assessment for the area, we collected 23 groundwater samples from domestic wells and conducted hydrochemical and water stable isotope analysis. Groundwater in the study area is mainly Ca-HCO3 type resulting from water-rock interactions. Stable oxygen and hydrogen isotopic compositions indicated that recharge water is derived from precipitation while some sampling sites had evaporation signatures. Irrigation water quality using sodium absorption ratio and salinity hazard showed most of the groundwater samples were found to be suitable for irrigation. The groundwater in the southwestern part of the study area was affected by both seawater intrusion and agricultural activities, indicating a higher possibility of groundwater contamination near the coastal areas. Elevated concentrations of nitrate and phosphate ions in the groundwater are considered to be influenced by anthropogenic activities such as fertilizer application. It is expected that this study would be able to provide preliminary information on groundwater quality for agricultural water supply in the Mangyeong-Dongjin watershed.