• Title/Summary/Keyword: Signaling traffic

Search Result 132, Processing Time 0.018 seconds

A Traffic Management Scheme for the Scalability of IP QoS (IP QoS의 확장성을 위한 트래픽 관리 방안)

  • Min, An-Gi;Suk, Jung-Bong
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.4
    • /
    • pp.375-385
    • /
    • 2002
  • The IETF has defined the Intserv model and the RSVP signaling protocol to improve QoS capability for a set of newly emerging services including voice and video streams that require high transmission bandwidth and low delay. However, since the current Intserv model requires each router to maintain the states of each service flow, the complexity and the overhead for processing packets in each rioter drastically increase as the size of the network increases, giving rise to the scalability problem. This motivates our work; namely, we investigate and devise new control schemes to enhance the scalability of the Intesev model. To do this, we basically resort to the SCORE network model, extend it to fairly well adapt to the three services presented in the Intserv model, and devise schemes of the QoS scheduling, the admission control, and the edge and core node architectures. We also carry out the computer simulation by using ns-2 simulator to examine the performance of the proposed scheme in respects of the bandwidth allocation capability, the packet delay, and the packet delay variation. The results show that the proposed scheme meets the QoS requirements of the respective three services of Intserv model, thus we conclude that the proposed scheme enhances the scalability, while keeping the efficiency of the current Intserv model.

An Analysis into the Characteristics of the High-pass Transportation Data and Information Processing Measures on Urban Roads (도시부도로에서의 하이패스 교통자료 특성분석 및 정보가공방안)

  • Jung, Min-Chul;Kim, Young-Chan;Kim, Dong-Hyo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.6
    • /
    • pp.74-83
    • /
    • 2011
  • The high-pass transportation information system directly collects section information by using probe cars and therefore can offer more reliable information to drivers. However, because the running condition and features of probe cars and statistical processing methods affect the reliability of the information and particularly because the section travel time is greatly influenced by whether there has been delay by signals on urban roads or not, there can be much deviation among the collected individual probe data. Accordingly, researches in multilateral directions are necessary in order to enhance the credibility of the section information. Yet, the precedent studies related to high-pass information provision have been conducted on the highway sections with the feature of continuous flow, which has a limit to be applied to the urban roads with the transportational feature of an interrupted flow. Therefore, this research aims at analyzing the features of high-pass transportation data on urban roads and finding a proper processing method. When the characteristics of the high-pass data on urban roads collected from RSE were analyzed by using a time-space diagram, the collected data was proved to have a certain pattern according to the arriving cars' waiting for signals with the period of the signaling cycle of the finish node. Moreover, the number of waiting for signals and the time of waiting caused the deviation in the collected data, and it was bigger in traffic jam. The analysis result showed that it was because the increased number of waiting for signals in traffic jam caused the deviation to be offset partially. The analysis result shows that it is appropriate to use the mean of this collected data of high-pass on urban roads as its representative value to reflect the transportational features by waiting for signals, and the standard of judgment of delay and congestion needs to be changed depending on the features of signals and roads. The results of this research are expected to be the foundation stone to improve the reliability of high-pass information on urban roads.