• Title/Summary/Keyword: Signaling Effect

Search Result 1,538, Processing Time 0.025 seconds

Effects of Ginseng Berry Water Extract on the Polysaccharide Hydrolysis of Extracellular Enzymes and Intracellular PTP1B and AKT1 (진생베리 열수 추출물의 다당체 분해 효소와 인슐린 신호전달 분자 PTP1B와 AKT1에 미치는 효과)

  • Kwon, Eun-Jeong;Hong, Sugyeong;Kim, Moon-Moo;Kim, Joo Wan;Kim, Deok Won;Chung, Kyung Tae
    • Journal of Life Science
    • /
    • v.24 no.9
    • /
    • pp.1006-1011
    • /
    • 2014
  • Ginseng has been known to be highly effective for health as a traditional medicinal herb. Ginseng berry, or fruit of ginseng, contains ginsenoside, saponin, polyphenol, polyacetylene, alkaloid, etc. as the main compounds as does ginseng. The aim of this study is to evaluate any effect of ginseng berry water extract (GBE) on diabetic-associated molecules, such as enzymes, which are responsible for the glucose entry of the cells and the insulin receptor signaling molecules using HepG2 cells. Therefore, two enzymes, ${\alpha}$-amylase and ${\alpha}$-glucosidase, were selected and assayed for their activities in the presence of GBE in vitro. These two enzymes are responsible for producing glucose from dietary starch. Protein-tyrosine phosphatase 1B (PTP1B) and Akt1 are key proteins in the insulin receptor signaling pathway. These two intracellular signaling molecules were investigated for their expression levels in HepG2 cells after insulin and GBE treatment. GBE, at concentrations up to $1,000{\mu}g/ml$, did not exert any inhibitory effect on ${\alpha}$-amylase and ${\alpha}$-glucosidase. It was observed that the expression level of PTP1B was increased by insulin and the $25{\mu}g/ml$ GBE treatment enhanced the PTP1B level. However, GBE at a concentration of $200{\mu}g/ml$ reduced the expression level of PTP1B. In the case of Akt1, the Akt1 level by insulin was decreased by GBE treatment. These data suggest that the water extracts of ginseng berry have an influence on intracellular signaling by insulin.

Effect of Vigna angularis on Toll-like Receptor Activation and Pro-inflammatory Cytokine Production (적소두 추출물이 톨유사수용체 활성 및 염증유발 사이토카인의 생성에 미치는 영향)

  • Kim, Mi-Hwa;Jeoung, See-Hwa;Lee, Seung-Woong;Kim, Hyun-Kyu;Park, Chan-Sun;Jeon, Byung-Hun;Oh, Hyun-Mee;Rho, Mun-Chual
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.4
    • /
    • pp.511-518
    • /
    • 2012
  • The mechanisms of Toll-like receptor (TLR) signaling have been the focus of extensive studies because TLRs are the target of therapeutic intervention on multiple diseases. In this study, we investigated the inhibitory potential of Vigna angularis (azuki bean) on the TLR signaling. The effect of Vigna angularis extract (JSD) on TLR activation was investigated by assessing NF-${\kappa}B$ and AP-1 inducible secreted embryonic alkaline phosphatase (SEAP) activity. JSD significantly inhibited SEAP activity induced by poly I:C (TLR3 ligand) and poly I (TLR7 ligand) in a dose-dependent manner at concentration below 100 ${\mu}g/ml$ with no sign of cytotoxicity. Pretreatment of JSD markedly suppressed mRNA expressions of pro-inflammatory cytokines and adhesive molecules such as TNF-${\alpha}$, IL-6, RANTES, MCP-1 and ICAM-1 induced by TLR ligands. It also diminished the phosphorylation of $I{\kappa}B$ kinase and $I{\kappa}B$, and followed by $I{\kappa}B$-mediated nuclear translocation of p50, p65, and phosphorylation of p38, JNK, and IRF signaling pathway. In conclusion, our results suggest that Vigna angularis has inhibitory activity on TLR-3 and -7 signaling and it can be further developed as a remedy in curing TLR-related multiple diseases.

Effect of Saussurea Lappa Root Extract on Proliferation and Hair Growth-related Signal Pathway in Human Hair Follicle Dermal Papilla Cells (당목향 뿌리 추출물의 인체 모유두세포 증식 및 모발 성장 관련 신호전달에 미치는 영향)

  • Chio, Hyoung-Chul;Jeong, Noh-Hee
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.647-652
    • /
    • 2021
  • In this study, Saussurea Lappa roots were extracted using ethanol and n-hexane, and also the effects on proliferation of human hair dermal papilla cells and fibroblast and related signaling pathway were evaluated. 3-[4, 5-dimethylthiazol-2-yl]-2, 5 diphenyl tetrazolium bromide (MTT) assay was conducted for cell proliferation effect of Saussurea Lappa root extract, and extracellular signal-related kinase (ERK), serine/threonine protein kinase (Akt), wingless-related integration site (Wnt)/𝛽-catenin signaling pathway, and 5𝛼-reductase expression through western blot analysis were measured. Saussurea Lappa root extract significantly increased human hair dermal papilla cells and propagation of fibroblast, promoted phosphorylation of ERK and Akt that get involved in cell proliferation. Additionally, Saussurea Lappa root extract significantly decreased promotion of Akt phosphorylation and cell proliferation by MEK/ERK inhibitor PD98059 and PI3K/Akt inhibitor LY294002. Also, Saussurea Lappa root extract induced intranuclear 𝛽-catenin accumulation by promoting phosphorylation of 𝛽-catenin (Ser552, 675) through phosphorylation of GSK-3𝛽 (Ser9), and suppressed activation of 5𝛼-reductase type I and II. Overall, Saussurea Lappa root induces cell proliferation through vitalization of ERK and Akt route of human hair dermal papilla cells and fibroblast and apoptosis defense mechanism, and can be helpful in hair loss prevention and hair growth by vitalizing the 𝛽-catenin signaling pathway and inhibiting activation of 5𝛼-reductase, which can be used as a potential hair care products.

Anti-oxidative Activity of Lycopene Via the Induction of HO-1 Expression by MAPK/Nrf2 Signaling Pathway in RAW 264.7 Cells (RAW 264.7 세포에서 Lycopene의 MAPK/Nrf2/HO-1 신호 전달 체계를 통한 항산화 효과)

  • Chung-Mu Park;Hyun An;Hyun-Seo Yoon
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • Purpose: Lycopene is abundantly contained in Tomatoes and is known for diverse biological activities such as antioxidant, anti-inflammatory, and anticancer effects. In this study, the antioxidative potential of lycopene was investigated through the induction of hemeoxygenase (HO)-1 by nuclear factor-erythroid 2 p45-related factor2 (Nrf2) and upstream signaling molecules, mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/Aktin RAW 264.7 cells. Methods: The antioxidative potential of lycopene against oxidative stress and its molecular mechanisms were determined by the cell viability assay, intracellular reactive oxygen species (ROS) formation assay, and Western blot analysis in RAW 264.7 cells. Results: Lycopene treatment significantly attenuated tert-butyl hydroperoxide (t-BHP) induced intracellular ROS formation in a dose-dependent manner without any cytotoxicity. In addition, 50 µM of lycopene for 6 h treatment induced potent HO-1 expression and its transcription factor, Nrf2. MAPK and PI3K/Aktwere also analyzed due to their critical roles in the regulation of cellular redox homeostasis against oxidative damage. As a result, phosphorylation of extracellular regulated kinase (ERK) was significantly induced by lycopene treatment while the activated status of c-Jun NH2-terminal kinase (JNK), p38, and Akt, were not given any effect. To confirm the antioxidative mechanism of HO-1 mediated by ERK activation, each selective inhibitor was employed in a protection assay, in which oxidative damage occurred by t-BHP. Lycopene, SnPP, and CoPP treatments reflected accelerated HO-1 expression could be a protective role against oxidative damage-initiated cell death. A selective inhibitor for ERK significantly inhibited the lycopene-induced cytoprotective effect but selective inhibitors for other signaling molecules did not attenuate the rate of t-BHP-induced cell death. Conclusion: In conclusion, lycopene potently scavenged intracellular ROS formation and enhanced the HO-1 mediated antioxidative potential through the modulation of Nrf2, MAPK signaling pathway in RAW 264.7 cells.

Soft corals collected from Jeju Island inhibits the α-MSH-induced melanogenesis in B16F10 cells through activation of ERK

  • Sanjeewa, K. K. Asanka;Park, Young-jin;Fernando, I. P. Shanura;Ann, Yong-Seok;Ko, Chang-Ik;Wang, Lei;Jeon, You-Jin;Lee, WonWoo
    • Fisheries and Aquatic Sciences
    • /
    • v.21 no.9
    • /
    • pp.21.1-21.8
    • /
    • 2018
  • In the present study, we first evaluated the melanin inhibitory effect of four crude 70% ethanol extracts separated from soft corals abundantly growing along the seawaters of Jeju Island, South Korea, including Dendronephthya castanea (DC), Dendronephthya gigantea (DG), Dendronephthya puetteri (DP), and Dendronephthya spinulosa (DS). Among the four ethanol extracts, the ethanol extract of DP (DPE) did not possess any cytotoxic effect on B16F10 cells. However, all other three extracts showed a cytotoxic effect. Also, DPE reduced the melanin content and the cellular tyrosinase activity without cytotoxicity, compared to the ${\alpha}-MSH$-stimulated B16F10 cells. Specifically, DPE downregulated the expression levels of tyrosinase and microphthalmia-associated transcription factor by activating the ERK signaling cascade in ${\alpha}-MSH$-stimulated B16F10 cells. Interestingly, the melanin inhibitory effect of DPE was abolished by the co-treatment of PD98059, an ERK inhibitor. According to these results, we suggest that DPE has whitening capacity with the melanin inhibitory effects by activating ERK signaling and could be used as a potential natural melanin inhibitor for cosmeceutical products.

Effect of Low Intensity Pulsed Ultrasound in Rat Chondrocyte (저강도 맥동성 초음파 적용이 관절연골세포에 미치는 영향)

  • Kim, Eun-Jung;Kim, Gye-Yeop
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.5
    • /
    • pp.1262-1269
    • /
    • 2008
  • Low intensity pulsed ultrasound(LIPUS) is known to accelerate bone regeneration, but the precise cellular signaling mechanism is still unclear. The purpose if this study was to determine the effect of LIPUS on the signaling mechanism of rat chondrocyte. In the explant culture condition, there was inhibition effect of 1 $W/cm^2$ intensity LIPUS on chondrocytes proliferation but chondrocytes proliferation was increased at 0.25 $W/cm^2$ intensity. In addition, western blot analysis of MAPKs showed that LIPUS increased ERK1/2 activity from the 10 min treatment of LIPUS. Hydrogen peroxide($H_2O_2$), resulted in a time- and dose-dependent cell proliferation, which was largely attributed to apoptosis. $H_2O_2$ treatment caused marked sustained nucleus condensation in Hoechst stain. LIPUS and $H_2O_2$ activates phosphorylation of p-ERK1/2 and PD 98059($10^{-5}M$) blocked the effect of LIPUS and $H_2O_2$. Moreover, the synergistic phosphorylation of p44/42 MAPK by $H_2O_2$, LIPUS was selectively inhibited by PD 98059, ERK1/2 inhibitor. In order to determine whether the increase in cell proliferation caused by $H_2O_2$ and LIPUS could be explained by changes in the level of the prostaglandin $E_2$. Our study demonstrated that LIPUS stimulate the cell proliferation via activated phosphorylation of ERK1/2 in condrocyte. LIPUS has anabolic effects on rat cartilage in explant cultures, indicating a potential important method for the treatment of osteoarthritic cartilarge.

Carbon monoxide activation of delayed rectifier potassium currents of human cardiac fibroblasts through diverse pathways

  • Bae, Hyemi;Kim, Taeho;Lim, Inja
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.1
    • /
    • pp.25-36
    • /
    • 2022
  • To identify the effect and mechanism of carbon monoxide (CO) on delayed rectifier K+ currents (IK) of human cardiac fibroblasts (HCFs), we used the wholecell mode patch-clamp technique. Application of CO delivered by carbon monoxidereleasing molecule-3 (CORM3) increased the amplitude of outward K+ currents, and diphenyl phosphine oxide-1 (a specific IK blocker) inhibited the currents. CORM3-induced augmentation was blocked by pretreatment with nitric oxide synthase blockers (L-NG-monomethyl arginine citrate and L-NG-nitro arginine methyl ester). Pretreatment with KT5823 (a protein kinas G blocker), 1H-[1,-2,-4] oxadiazolo-[4,-3-a] quinoxalin-1-on (ODQ, a soluble guanylate cyclase blocker), KT5720 (a protein kinase A blocker), and SQ22536 (an adenylate cyclase blocker) blocked the CORM3 stimulating effect on IK. In addition, pretreatment with SB239063 (a p38 mitogen-activated protein kinase [MAPK] blocker) and PD98059 (a p44/42 MAPK blocker) also blocked the CORM3's effect on the currents. When testing the involvement of S-nitrosylation, pretreatment of N-ethylmaleimide (a thiol-alkylating reagent) blocked CO-induced IK activation and DL-dithiothreitol (a reducing agent) reversed this effect. Pretreatment with 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)-21H,23H porphyrin manganese (III) pentachloride and manganese (III) tetrakis (4-benzoic acid) porphyrin chloride (superoxide dismutase mimetics), diphenyleneiodonium chloride (an NADPH oxidase blocker), or allopurinol (a xanthine oxidase blocker) also inhibited CO-induced IK activation. These results suggest that CO enhances IK in HCFs through the nitric oxide, phosphorylation by protein kinase G, protein kinase A, and MAPK, S-nitrosylation and reduction/oxidation (redox) signaling pathways.

Mychonastes sp. 246 Suppresses Human Pancreatic Cancer Cell Growth via IGFBP3-PI3K-mTOR Signaling

  • Hyun-Jin Jang;Soon Lee;Eunmi Hong;Kyung June Yim;Yong-Soo Choi;Ji Young Jung;Z-Hun Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.4
    • /
    • pp.449-462
    • /
    • 2023
  • Previously, we confirmed that Mychonastes sp. 246 methanolic extract (ME) markedly reduced the viability of BxPC-3 human pancreatic cancer cells. However, the underlying mechanism ME remained unclear. Hence, we attempted to elucidate the anticancer effect of ME on BxPC-3 human pancreatic cancer cells. First, we investigated the components of ME and their cytotoxicity in normal cells. Then, we confirmed the G1 phase arrest mediated growth inhibitory effect of ME using a cell counting assay and cell cycle analysis. Moreover, we found that the migration-inhibitory effect of ME using a Transwell migration assay. Through RNA sequencing, Gene Ontology-based network analysis, and western blotting, we explored the intracellular mechanisms of ME in BxPC-3 cells. ME modulated the intracellular energy metabolism-related pathway by altering the mRNA levels of IGFBP3 and PPARGC1A in BxPC-3 cells and reduced PI3K and mTOR phosphorylation by upregulating IGFBP3 and 4E-BP1 expression. Finally, we verified that ME reduced the growth of three-dimensional (3D) pancreatic cancer spheroids. Our study demonstrates that ME suppresses pancreatic cancer proliferation through the IGFBP3-PI3K-mTOR signaling pathway. This is the first study on the anticancer effect of the ME against pancreatic cancer, suggesting therapeutic possibilities and the underlying mechanism of ME action.

Cytokine Inductions and Intracellular Signal Profiles by Stimulation of dsRNA and SEB in the Macrophages and Epithelial Cells

  • Jun-Pyo Choi;Purevsuren Losol;Ghazal Ayoub;Mihong Ji;Sae-Hoon Kim;Sang-Heon Cho;Yoon-Seok Chang
    • IMMUNE NETWORK
    • /
    • v.22 no.2
    • /
    • pp.15.1-15.16
    • /
    • 2022
  • Foreign molecules, including viruses and bacteria-derived toxins, can also induce airway inflammation. However, to the best of our knowledge, the roles of these molecules in the development of airway inflammation have not been fully elucidated. Herein, we investigated the precise role and synergistic effect of virus-mimicking double-stranded RNA (dsRNA) and staphylococcal enterotoxin B (SEB) in macrophages and epithelial cells. To identify cytokine expression profiles, both the THP-1-derived macrophages and BEAS-2B epithelial cells were stimulated with dsRNA or SEB. A total of 21 cytokines were evaluated in the culture supernatants. We observed that stimulation with dsRNA induced cytokine production in both cell types. However, cytokine production was not induced in SEB-stimulated epithelial cells, compared to the macrophages. The synergistic effect of dsRNA and SEB was evaluated observing cytokine level and intracellular phospho-signaling. Fifteen different types were detected in high-dose dsRNA-stimulated epithelial cells, and 12 distinct types were detected in macrophages; those found in macrophages lacked interferon production compared to the epithelial cells. Notably, a synergistic effect of cytokine induction by co-stimulation of dsRNA and SEB was observed mainly in epithelial cells, via activation of most intracellular phosphor-signaling. However, macrophages only showed an accumulative effect. This study showed that the type and severity of cytokine productions from the epithelium or macrophages could be affected by different intensities and a combination of dsRNA and SEB. Further studies with this approach may improve our understanding of the development and exacerbation of airway inflammation and asthma.

Cytoprotective effect of Eriobotrya japonica L. against the iron-induced oxidative stress through AMPK activation (AMPK 활성화를 통한 중금속 유발 산화적 스트레스에 대한 비파엽의 세포 보호 효과)

  • Min-Jin Kim;Young-Eun Kim;Seon Been Bak;Su-Jin Bae;Kwang-Il Park;Sun-Dong Park;Young Woo Kim
    • Herbal Formula Science
    • /
    • v.32 no.1
    • /
    • pp.99-109
    • /
    • 2024
  • Objectives : In this study, we investigated the cytoprotective effect of Eriobotrya japonica L. (EJ) extract against Arachidonic acid (AA)+iron-induced oxidative stress. Methods : To confirm the cytoprotective effect of EJ against AA+iron-induced oxidative stress in HepG2 cells, it was evaluated by MTT assay, immunoblot anaylsis, and Calcein-AM/propidium iodide (PI) staining. Additionally, the mechanism of action of the cytoprotective effect was evaluated through molecular mechanisms. Results : EJ (100 ㎍/mL) inhibited Arachidonic acid (AA)+iron-induced cell death in a concentration-dependent manner. It also inhibited AA+iron-induced mitochondrial dysfunction and ROS production. EJ activated the LKB1-AMPK signaling pathway. Conclusions : In conclusion, EJ has the ability to protect liver cells from oxidative stress, indicating that it is related to AMPK-LKB1 signaling pathways.