• Title/Summary/Keyword: Signal to noise ratio (SNR)

Search Result 1,127, Processing Time 0.027 seconds

A Study on EEG Artifact Removal Method using Eye tracking Sensor Data (시선 추적 센서 데이터를 활용한 뇌파 잡파 제거 방법에 관한 연구)

  • Yun, Jong-Seob;Kim, Jin-Heon
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1109-1114
    • /
    • 2018
  • Electroencephalogram (EEG) is a tool used to study brain activity caused by external stimuli. In this process, artifacts are mixed and it is easy to distort the signal, so post-processing is necessary to remove it. Independent Component Analysis (ICA) is a widely used method for removing artifact. This method has a disadvantage in that it has excellent performance but some loss of brain wave information. In this paper, we propose a method to reduce EEG information loss by restricting the filter coverage using eye blink information obtained from Eyetracker. We then compared the results of the proposed method with the conventional method using quantization methods such as Signal to Noise Ratio (SNR) and Spectral Coherence (SC).

Design of the Satellite Beacon Receiver Using Array Based Digital Filter (다중배열 디지털필터를 이용한 위성비콘 수신기 설계)

  • Lee, Kyung-Soon;Koo, Kyung-Heon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.10
    • /
    • pp.909-916
    • /
    • 2016
  • The beacon receiver is an equipment which detects and measures the signal strength of transmitting satellite beacon signal. Beacon signals transmitted by satellites are low power continuous wave(CW) signals without any modulation intended for antenna steering to satellite direction and power control purposes on the earth. The beacon signal detection method using a very narrow band analog filter and RSSI(Received Signal Strength Intensity) has been typically used. However, it requires the implementation to track the frequency at the beacon receiver, thus a beacon frequency variation of the satellite due to temperature changes and long-term operation. Therefore, in this paper, the beacon signal detection receiver is designed by using a very narrow band digital filter array for a faster acquisition and SNR(Signal to Noise Ratio) method detection. For this purpose, by calculating the satellite link budget with the rain attenuation between satellite and ground station, and then extracting the received $C/N_o$ of the beacon signal, this work derives the bandwidth and the array number of the configured digital filter that gives the required C/N.

Ultimate Defect Detection Using Run Length Coding in Automatic Vision Inspection System (영상기반 자동검사시스템에서 Run Length Coding을 이용한 한도 결함 검출 전처리 기법)

  • Joo, Younjg-Bok;Kwon, Oh-Young;Huh, Kyung-Moo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.1
    • /
    • pp.8-11
    • /
    • 2012
  • Automated Vision Inspection (AVI) systems automatically detect any defect feature in a surface image. The performance of the system can be measured under a special circumstances such as ultimate defect detection. In this situation, the defect signal level is similar to noise level and it becomes hard to make a solid decision with AVI systems. In this paper, we propose an effective preprocessing technique to enhance SNR (Signal to Noise Ratio). The method is motivated by some principles of HVS (Human Visual System) and RLC (Run Length Coding) techniques is used for this purpose. The proposed preprocessing technique enhances SNR under ultimate defect conditions and improves overall performance of AVI system.

Image Denoising for Metal MRI Exploiting Sparsity and Low Rank Priors

  • Choi, Sangcheon;Park, Jun-Sik;Kim, Hahnsung;Park, Jaeseok
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.4
    • /
    • pp.215-223
    • /
    • 2016
  • Purpose: The management of metal-induced field inhomogeneities is one of the major concerns of distortion-free magnetic resonance images near metallic implants. The recently proposed method called "Slice Encoding for Metal Artifact Correction (SEMAC)" is an effective spin echo pulse sequence of magnetic resonance imaging (MRI) near metallic implants. However, as SEMAC uses the noisy resolved data elements, SEMAC images can have a major problem for improving the signal-to-noise ratio (SNR) without compromising the correction of metal artifacts. To address that issue, this paper presents a novel reconstruction technique for providing an improvement of the SNR in SEMAC images without sacrificing the correction of metal artifacts. Materials and Methods: Low-rank approximation in each coil image is first performed to suppress the noise in the slice direction, because the signal is highly correlated between SEMAC-encoded slices. Secondly, SEMAC images are reconstructed by the best linear unbiased estimator (BLUE), also known as Gauss-Markov or weighted least squares. Noise levels and correlation in the receiver channels are considered for the sake of SNR optimization. To this end, since distorted excitation profiles are sparse, $l_1$ minimization performs well in recovering the sparse distorted excitation profiles and the sparse modeling of our approach offers excellent correction of metal-induced distortions. Results: Three images reconstructed using SEMAC, SEMAC with the conventional two-step noise reduction, and the proposed image denoising for metal MRI exploiting sparsity and low rank approximation algorithm were compared. The proposed algorithm outperformed two methods and produced 119% SNR better than SEMAC and 89% SNR better than SEMAC with the conventional two-step noise reduction. Conclusion: We successfully demonstrated that the proposed, novel algorithm for SEMAC, if compared with conventional de-noising methods, substantially improves SNR and reduces artifacts.

Evaluation of Validity Thyroid Scintigraphy Using Parallel Hole Collimator (갑상샘 신티그래피 검사 시 평행다공형 조준기 적용의 유효성 평가)

  • Su-Young Park;Ji-Youn Kim;Sung-Min Ahn
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.1
    • /
    • pp.27-36
    • /
    • 2024
  • In this study, When acquisition thyroid scintigraphy images, a parallel hole collimator was applied, and the difference from the pinhole collimator was quantitatively analyzed under each image acquisition condition. Visual size, resolution, sensitivity, signal to noise ratio (SNR), and contrast to noise ratio (CNR) were evaluated using thyroid phantom and point source. When comparing visual size, it was confirmed that an image similar to the size of the pinhole collimator could be obtained only when a magnification ratio of about 2.00 to 2.09 times when applying a parallel hole collimator. There was no tendency in FWHM(mm) measurement using a point source, and sensitivity was high in the parallel hole collimator. SNR and CNR were high when using a low magnification ratio, matrix size of 128×128, and a parallel hole collimator. In images of similar size to the naked eye, when the matrix size was the same, both SNR and CNR were high in the pinhole collimator. Therefore, when performing a thyroid scintigraphy test, if appropriate conditions are set according to the situation of each hospital and a parallel hole collimator is applied, it can be a good option in terms of equipment utilization and work efficiency.

Usefulness of Carbon Fiber Reinforced Plastics as a Material of Auxiliary Tool for X-ray Imaging (엑스선 촬영 시 보조도구 재료로써 탄소 섬유 강화 플라스틱의 유용성)

  • Joon-Ho Moon;Bon-Yeoul Koo
    • Journal of radiological science and technology
    • /
    • v.46 no.3
    • /
    • pp.197-205
    • /
    • 2023
  • When taking X-rays, various auxiliary tools were used to fix a patient's exact shooting position and posture. In this study, we evaluated the usefulness of carbon fiber reinforced plastics(CFRP) 3K as a material of auxiliary tools by comparing poly methyl metha acrylate(PMMA), polycarbonate(PC), and CFRP 3K each of which has high radiolucency. X-ray radiolucencies were measured by stacking 1 mm panels of each material, and contrast to noise ratio(CNR) and signal to noise ratio(SNR) of images of each material were measured by comparing with None, which stands for images that are taken without any material. All three materials showed over 90% X-ray radiolucencies within 2 ㎜ thickness, and there was no significant difference. PC, PMMA and CFRP 3K had high CNR and SNR in order, and CFRP 3K showed the closest CNR and SNR to those of None. While taking X-rays, by using CFRP 3K material within 2 ㎜ thickness as a material of auxiliary tools, which are used to reduce re-shooting and X-ray exposure by fixing a patient's exact shooting position and posture and improve the quality of medical images, a high X-ray radiolucency of over 90% would be obtained, and the influence on the image could be minimized.

The Effect of Advanced Modeling Iterative Reconstruction(ADMIRE) on the Quality of CT Images : Non-contrast CT in Chest (고급 모델링 반복 재구성법(ADMIRE)이 CT 영상의 화질에 미 치는 영향: 흉부 비조영 CT에서)

  • Lee, SangHeon;Lee, HyoYeong
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.2
    • /
    • pp.159-168
    • /
    • 2019
  • We examined the effect of Siemens ADMIRE (Advanced Modeled Iterative Reconstruction) on image quality by measuring changes in HU, noise, and SNR of background air, fat, muscle, and background signals on a chest CT scan. Experimental results show that as the ADMIRE Strength increases, the noise decreases and the signal increases, consequently the signal-to-noise ratio increases. ADMIRE can reduce noise by 28 ~ 61% compared to FBP, which is a conventional image reconstruction algorithm, and improves SNR by 16 ~ 100%.

Improving Image Quality of MRI using Frequency Filter (Frequency Filter를 사용한 MRI 영상 화질의 향상)

  • Kim, Dong-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.11
    • /
    • pp.309-315
    • /
    • 2009
  • Image reconstruction of Inverse Fourier Transform after Frequency Domain Data is filtered applies to Image signal acquired from MR. There are various kinds of image processing techniques; image preprocessing, image reconstruction, image compression, image restoration image mixture, noise and artifact elimination, and image quality improvement. In this paper, optimum filter applicable to diagnosis in clinic by comparing and analyzing the characteristics of the filter will be explained. Fermi-Dirac filter will improve the image quality better than the previous MR image.

A Serial Acquisition Scheme for DS-SS Systems Using Antenna Arrays and Its Performance in a Fading Channel (안테나 배열을 사용한 DS-SS 시스템을 위한 직렬 포착 방식과 페이딩 채널에서의 성능)

  • 박민규;오성근
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.5B
    • /
    • pp.931-941
    • /
    • 2000
  • We propose a serial acquisition scheme using antenna arrays for initial acquisition of direct sequence spread spectrum (DS-SS) signals, which can lower substantially the range of detectable signal-to-noise ratio (SNR). The proposed scheme uses the sum of the independent decision samples form psedo-noise (PN) co-phased noncoherent I-Q matched filters (MFs) associated with antenna arrays as a decision variable in order to enhance SNR of the resulting signal. We analyze its mean acquisition time performance under an additive white Gaussian noise (AWGN) channel and a flat Rayleigh fading channel by deriving the expressions for the probabilities of detection and false alarm. From mumerical results, we see that the acquisition performance of the proposal scheme becomes improved continually as the number of antennas increses.

  • PDF

Array gain estimated by spatial coherence in noise fields (소음 환경에서 공간상관성을 이용한 배열이득 추정)

  • Park, Ji Sung;Choi, Yong Wha;Kim, Jea Soo;Cho, Sungho;Park, Jung Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.6
    • /
    • pp.427-435
    • /
    • 2016
  • Array Gain (AG) is a metric to measure the performance of an array of acoustic sensors. AG is affected by the configuration of array, frequency and array element spacing, and the directivity of the ambient noise. In this paper, an algorithm to calculate AG based on the spatial coherence is used, and the results are verified through sea-going experiment. The method using the spatial coherence can be used to consider the arbitrary shape of an array and directionality of ambient noise. In the sea-going experiment, the towed source was used to transmit the Continuous Wave (CW), and was received at the horizontal line array on the seabed. The ambient noise was measured between the source transmission. The experimental AG was calculated from the SNR (Signal to Noise Ratio) of single sensor and an array of sensors. Finally, the predicted AG is shown to agree with the experimental value of AG.