• Title/Summary/Keyword: Signal to Noise Ratio(SNR)

Search Result 1,129, Processing Time 0.026 seconds

Output SINR Analysis of GPS Adaptive Interference Canceler Based on Modified Despreader (변형된 역확산기 기반의 GPS 적응 간섭제거기의 출력 SINR 해석)

  • Hwang, Suk-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.2
    • /
    • pp.195-202
    • /
    • 2014
  • The Global Positioning System (GPS), which has various military and commercial applications, is designed to estimate the location of the specific user or object. In order to accurately estimate the location, GPS requires at least four satellite signals. The GPS receiver operates on extremely low signal-to-noise ratio (SNR) environment and it may suffer from various interference signals with the extremely high power. In this paper, we introduce a blind adaptive receiver based on the modified despreader, which suppress interference signals and detect GPS signals of interest without requiring explicit angle-of-arrival (AOA) information. We, also, provide the mathematical analysis for the signal-to-interference and noise ratio (SINR) of the modified despeader beamformer output. A representative computer simulation example is presented to illustrate the interference suppression performance of the considered GPS receiver and mathematical analysis of the SINR.

Comparison Research of SNR and SRb with Bright Calibration and Multi Frame Images in Digital Radiography of Welded Test Components (용접 시험편의 디지털 방사선 검사에서 밝기 교정과 중첩 영상에 따른 SNR 및 SRb 비교 연구)

  • Nam, Mun-Ho;Yang, Jin-Wook;Cho, Kap-Ho
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.5
    • /
    • pp.731-739
    • /
    • 2021
  • This work compared the bright calibration of digital radiation with signal-to-noise ratio and basic spatial resolution according to multi frame to enable effective inspection of welding parts of structures at industrial sites. A total of 130 images were obtained by using a 75Se radiation source for flat weld test pieces and segmenting bright calibration and multi frame prior to shooting. The study confirms that the signal-to-noise ratio improves as the number of bright calibrations and the number of multi frame increases. The basic spatial resolution satisfied the baseline for both radiographic images. It was confirmed that the number of signal-to-noise ratio was similar by comparing images taken after installing lead shielding for scattering radiation. Although signal-to-noise ratio increases as multi frame increases, it is believed that good quality digital radiographs can be obtained if appropriate radiographic techniques are devised because exposure time of radiation affects workers' exposure and work efficiency.

Enhancement Technologies of Signal-to-Noise Ratio in the Near-Field Scanning Systems (근거리 전자장 스캐닝 시스템의 잡음 대 성능 비 향상 기술)

  • Shin, Youngsan;Lee, Seongsoo
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.510-513
    • /
    • 2018
  • Recently, EMC (electromagnetic compatibility) becomes very important, which demands the measurement of EMI (electromagnetic interference) in the chip level. NFS (near-field scanning) systems defined in IEC 61967 and IEC 62508 are typical methods to analyze EMI in the chip level. As chips becomes faster, frequency measurement of NFS system should become wideband, but it degrades SNR (singal-to-noise ratio) of the NFP (near-field probe). This paper surveys SNR enhancement technologies of the NFS while maintaining wideband characteristics.

Statistical Approach of Measurement of Signal to Noise Ratio in According to Change Pulse Sequence on Brain MRI Meningioma and Cyst Images (뇌 수막종 및 낭종에서 자기공명영상 펄스 시퀀스 변화에 따른 신호대잡음비의 통계적 접근)

  • Lee, Eul-Kyu;Choi, Kwan-Woo;Jeong, Hoi-Woun;Jang, Seo-Goo;Kim, Ki-Won;Son, Soon-Yong;Min, Jung-Whan;Son, Jin-Hyun
    • Journal of radiological science and technology
    • /
    • v.39 no.3
    • /
    • pp.345-352
    • /
    • 2016
  • The purpose of this study was to needed basis of measure MRI CAD development for signal to noise ratio (SNR) by pulse sequence analysis from region of interest (ROI) in brain magnetic resonance imaging (MRI) contrast. We examined images of brain MRI contrast enhancement of 117 patients, from January 2005 to December 2015 in a University-affiliated hospital, Seoul, Korea. Diagnosed as one of two brain diseases such as meningioma and cysts SNR for each patient's image of brain MRI were calculated by using Image J. Differences of SNR among two brain diseases were tested by SPSS Statistics21 ANOVA test for there was statistical significance (p < 0.05). We have analysis socio-demographical variables, SNR according to sequence disease, 95% confidence according to SNR of sequence and difference in a mean of SNR. Meningioma results, with the quality of distributions in the order of T1CE, T2 and T1, FLAIR. Cysts results, with the quality of distributions in the order of T2 and T1, T1CE and FLAIR. SNR of MRI sequences of the brain would be useful to classify disease. Therefore, this study will contribute to evaluate brain diseases, and be a fundamental to enhancing the accuracy of CAD development.

SNR Improvement of AE Signal for Detection of Gas Leak from Tubes under Vibratory Environment

  • Lee, Tae-Hun;Jhang, Kyung-Young;Kim, Jung-Kyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.3
    • /
    • pp.262-267
    • /
    • 2007
  • Detection of gas leak from a tube is a very important issue in the quality control of machines such as the heat exchanger of an air-conditioner, because leakage of operating gas directly reduces the performance of machines. The acoustic emission (AE) method is a common way to detect leak of gas, however its application under the environment of mechanical vibration is restricted since most AE detectors are very sensitive to external vibration noise. In order to overcome this problem, we propose a method based on the mode analysis of the Lamb wave. In this method, the dominant Lamb mode and its frequency are found first, and then a proper band-pass filter is used to retain only this frequency component. In this way, we could improve the SNR (signal-to-noise ratio) of AE signal generated by gas leak from the tube even under vibratory environment.

Image Optimization of Fast Non Local Means Noise Reduction Algorithm using Various Filtering Factors with Human Anthropomorphic Phantom : A Simulation Study (인체모사 팬텀 기반 Fast non local means 노이즈 제거 알고리즘의 필터링 인자 변화에 따른 영상 최적화: 시뮬레이션 연구)

  • Choi, Donghyeok;Kim, Jinhong;Choi, Jongho;Kang, Seong-Hyeon;Lee, Youngjin
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.3
    • /
    • pp.453-458
    • /
    • 2019
  • In this study we analyzed the tendency of the image characteristic by changing filtering factor for the proposed fast non local means (FNLM) noise reduction algorithm with designed Male Adult mesh (MASH) phantom through Geant4 application for tomographic emission (GATE) simulation program. To accomplish this purpose, MASH phantom for human copy was designed through the GATE simulation program. In addition, we acquired degraded image by adding Gaussian noise with a value of 0.005 using the MATALB program in MASH phantom. Moreover, in degraded image, the FNLM noise reduction algorithm was applied by changing the filtering factors, which set to 0.005, 0.01, 0.05, 0.1, 0.5, and 1.0 value, respectively. To quantitatively evaluate, the coefficient of variation (COV), signal to noise ratio (SNR), and contrast to noise ratio (CNR) were calculated in reconstructed images. Results of the COV, SNR and CNR were most improved in image with a filtering factor of 0.05 value. Especially, the COV was decreased with increasing filtering factor, and showed nearly constant values after 0.05 value of the filtering factor. In addition, SNR and CNR were showed that improvement with increasing filtering factor, and deterioration after 0.05 value of the filtering factor. In conclusion, we demonstrated the significance of setting the filtering factor when applying the FNLM noise reduction algorithm in degraded image.

Adaptive Modulation System Using SNR Estimation Method Based on Correlation of Decision Feedback Signal (Decision Feedback 신호의 자기 상관 기반 SNR 추정 방법을 적용한 적응 변조 시스템)

  • Kim, Seon-Ae;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.3
    • /
    • pp.282-291
    • /
    • 2011
  • Adaptive modulation(AM) is an important technique to increase the system efficiency, in which transmitter selects the most suitable modulation mode adaptively according to channel state in the temporary and spatially varying communication environment. Fixed modulation on channels with varying signal-to-noise ratio(SNR) is that the bit-errorrate(BER) probability performance is changing with the channel quality. An adaptive modulation scheme can be designed to have a BER which is constant for all channel SNRs. The correct as well as fast and simple SNR estimation is required essentially for this adaptive modulation. In order to operate adaptive modulation system effectively, in this paper, we analyze the effect of SNR estimation performance to it through the average BER and data throughput. Applying SNR estimation based on auto-correlation of decision feedback signal and others to adaptive modulation system, we also confirm performance degradation or improvement of its which is decided by SNR estimation error at each transition point of modulation level. Since SNR estimation based on auto-correlation of decision feedback signal shows stable estimation performance for various quadrature amplitude modulation(QAM) comparatively, this can be reduced degradation than others at each transition point of modulation level.

Error Rate Performance of DS-BPSK Signal transmitted through a Hard-Limiting Satellite Channel in the presence of Interference and Noise (간섭과 잡음이 존재하는 Hard-Limiting 위성채널상에서의 DS-BPSK신호의 오율특성)

  • 신동일;조성준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.11 no.1
    • /
    • pp.64-72
    • /
    • 1986
  • The error rate equation fo DS-BPSK(Direct Sequence Binary Phase Shift Keying) signal transmitted through the nonlinear satellite transponder has been derived in the cochannel interference and downlink Gaussian noise environment. The input to the satellite transponder is the superposition of DS-BPSK signal with one interfere which is a cochannel wide-band PN signal. The error rate performance of DS-BPSK system has been evaluated and shown in figures in terms of carrier to interference power ratio(CIR), downlink signal to noise power ratio(downlink SNR) and process gain. In the analysis, it has been shown that the use of a hard limiter in DS-BPSK satellite system leads to the generation of narrow-band intermodulation products which is independent of the process gain. Also it is known that the error rate performance can be improved in the low levels (below 10dB) of CIR as the CIR increase. As the process gain varies from 10 to 100 the curve gives the about 10 dB gain in downlink SNR to maintain a fixed error rate.

  • PDF

3T MR Spin Echo T1 Weighted Image at Optimization of Flip Angle (3T MR 스핀에코 T1강조영상에서 적정의 숙임각)

  • Bae, Sung-Jin;Lim, Chung-Hwang
    • Journal of radiological science and technology
    • /
    • v.32 no.2
    • /
    • pp.177-182
    • /
    • 2009
  • Purpose : This study presents the optimization of flip angle (FA) to obtain higher contrast to noise ratio (CNR) and lower specific absorption rate (SAR). Materials and Method : T1-weighted images of the cerebrum of brain were obtained from 50$^\circ$ to 130$^\circ$ FA with 10$^\circ$ interval. Signal to noise ratios (SNRs) were calculated for white matter (WM), gray matter (GM), and background noise. The proper FA was analyzed by T-test statistics and Kruskal-wallis analysis using R1 = 1- exp ($\frac{-TR}{T1}$) and Ernst angle cos $\theta$ = exp ($\frac{-TR}{T1}$). Results : The SNR of WM at 130$^\circ$ FA is approximately 1.6 times higher than the SNR of WM at 50$^\circ$. The SNR of GM at 130$^\circ$ FA is approximately 1.9 times higher than the SNR of GM at 50$^\circ$. Although the SNRs of WM and GM showed similar trends with the change of FA values, the slowdown point of decrease after linear fitting were different. While the SNR of WM started decreasing at 120$^\circ$ FA, the SNR of GM started decreasing at less than 110$^\circ$. The highest SNRs of WM and GM were obtained at 130$^\circ$ FA. The highest CNRs, however, were obtained at 80$^\circ$ FA. Conclusion : Although SNR increased with the change of FA values from 50$^\circ$ to 130$^\circ$ at 3T SE T1WI, CNR was higher at 80$^\circ$ FA than at the usually used 90$^\circ$ FA. In addition, the SAR was decreased by using smaller FA. The CNR can be increased by using this optimized FA at 3T MR SE T1WI.

  • PDF

A New Statistical Voice Activity Detector Based on UMP Test (UMP 테스트에 근거한 새로운 통계적 음성검출기)

  • Jang, Keun-Won;Chang, Joon-Hyuk;Kim, Dong-Kook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.16-24
    • /
    • 2007
  • Voice activity detectors (VADs) are important in wireless communication and speech signal processing. In the conventional VAD methods. an expression for the likelihood ratio test (LRT) based on statistical models is derived. Then, speech or noise is decided by comparing the value of the expression with a threshold. We propose a new method with the modified decision rule based on the Gaussian distribution and the uniformly most power (UMP) test. This method requires the distribution of the absolute value of the incoming speech signal. Then we can obtain the final decision through the relation between the Rayleigh distributions. This VAD method can detect speech without a priori signal-to-noise ratio (SNR) which is required in the conventional VAD algorithms. Additionally, in the various VAD performance tests, the proposed VAD method is shown to be more effective than the traditional scheme.