• Title/Summary/Keyword: Signal to Noise Ratio(SNR)

Search Result 1,129, Processing Time 0.027 seconds

Multi-Level Correlation LMS Algorithm for Digital On-Channel Repeater System in Digital TV Broadcasting System Environment (DTV 방송 시스템 환경에서 동일 채널 중계기를 위한 다중 레벨 상관 LMS 기법)

  • Lee, Je-Kyoung;Kim, Jeong-Gon
    • Journal of Broadcast Engineering
    • /
    • v.15 no.1
    • /
    • pp.63-75
    • /
    • 2010
  • In this paper, the equalizer techniques that is able to adopt the digital on-channel repeater for 8VSB-based DTV system has been analyzed and we propose an effective equalizer structure which can reduce the error propagation phenomenon by the feedback signal and improve the receiver performance at the same time. In order to confirm the effective cancellation of the feedback signal, the multi-level Correlation LMS scheme is proposed through the analysis of conventional basic LMS based DFE and Correlation LMS algorithm and as compared with the conventional method, we can confirm the reduction of error propagation. When performing the computer simulation, as the Brazil channel model which is very popular for DTV broadcasting system is adopted, the result is drawn by comparing and analysing the equalizer algorithm. We have examine the symbol error rate which is in the range of 15~25dB of operation receipt SNR and MSE(Mean Square Error) in the DTV broadcasting system. As a result of comparing with the existing method, the signal-noise ratio which is necessary for maintain the bit error correction ability that the means of proposal is same is reduced by about 2~5dB, and in the rate of convergence through the MSE, we found the reduction of needed time.

Performance of Detection Probability with Adaptive Threshold Algorithm for CR Based on Ad-Hoc Network (인지 무선 기반 애드 혹 네트워크에서 적응적 임계치 알고리즘을 이용한 센싱 성능)

  • Lee, Kyung-Sun;Kim, Yoon-Hyun;Kim, Jin-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.5
    • /
    • pp.632-639
    • /
    • 2012
  • Ad-hoc networks can be used various environment, which it is difficult to construct infrastructures, such as shadowing areas, disaster areas, war area, and so on. In order to support to considerable and various wireless services, more spectrum resources are needed. However, efficient utilization of the frequency resource is difficult because of spectrum scarcity and the conventional frequency regulation. Ad-hoc networks employing cognitive radio(CR) system that guarantee high spectrum utilization provide effective way to increase the network capacity. In conventional CR based ad-hoc network, it uses constant threshold value to detect primary user signal, so the results become not reliable. In this paper, to solve this problem, we apply adaptive threshold value to the CR based ad-hoc network, and adaptive threshold is immediately changed by SNR(Signal to Noise Ratio). From the simulation results, we confirmed that proposed algorithm has the greatly better detection probabilities than conventional CR based ad-hoc network.

Improvement of the Adaptive Modulation System with Optimal Turbo Coded V-BLAST Technique using STD Scheme (선택적 전송 다이버시티 기법을 적용한 최적의 터보 부호화된 V-BLAST 적응변조 시스템의 성능 개선)

  • Ryoo, Sang-Jin;Choi, Kwang-Wook;Lee, Kyung-Hwan;You, Cheol- Woo;Hong, Dae-Ki;Hwang, In-Tae;Kim, Cheol-Sung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.2
    • /
    • pp.6-14
    • /
    • 2007
  • In this paper, we propose and observe the Adaptive Modulation system with optimal Turbo Coded V-BLAST (Vertical-Bell-lab Layered Space-Time) technique that is applied the extrinsic information from MAP (Maximum A Posteriori) Decoder in decoding Algorithm of V-BLAST: ordering and slicing. The extrinsic information is used by a priori probability and the system decoding process is composed of the Main Iteration and the Sub Iteration. And comparing the proposed system with the Adaptive Modulation system using conventional Turbo Coded V-BLAST technique that is simply combined V-BLAST with Turbo Coding scheme, we observe how much throughput performance has been improved. In addition, we observe the proposed system using STD (Selection Transmit Diversity) scheme. As a result of simulation, Comparing with the conventional Turbo Coded V-BLAST technique with the Adaptive Modulation systems, the optimal Turbo Coded V-BLAST technique with the Adaptive Modulation systems has better throughput gain that is about 350 Kbps in 11 dB SNR range. Especially, comparing with the conventional Turbo Coded V-BLAST technique using 2 transmit and 2 receive antennas, the proposed system with STD (Selection Transmit Diversity) scheme show that the improvement of maximum throughput is about 1.77 Mbps in the same SNR range.

Baseline Correction in Computed Radiography Images with 1D Morphological Filter (CR 영상에서 기저선 보정을 위한 1차원 모폴로지컬 필터의 이용에 관한 연구)

  • Kim, Yong-Gwon;Ryu, Yeunchul
    • Journal of radiological science and technology
    • /
    • v.45 no.5
    • /
    • pp.397-405
    • /
    • 2022
  • Computed radiography (CR) systems, which convert an analog signal recorded on a cassette into a digital image, combine the characteristics of analog and digital imaging systems. Compared to digital radiography (DR) systems, CR systems have presented difficulties in evaluating system performance because of their lower detective quantum efficiency, their lower signal-to-noise ratio (SNR), and lower modulation transfer function (MTF). During the step of energy-storing and reading out, a baseline offset occurs in the edge area and makes low-frequency overestimation. The low-frequency offset component in the line spread function (LSF) critically affects the MTF and other image-analysis or qualification processes. In this study, we developed the method of baseline correction using mathematical morphology to determine the LSF and MTF of CR systems accurately. We presented a baseline correction that used a morphological filter to effectively remove the low-frequency offset from the LSF. We also tried an MTF evaluation of the CR system to demonstrate the effectiveness of the baseline correction. The MTF with a 3-pixel structuring element (SE) fluctuated since it overestimated the low-frequency component. This overestimation led the algorithm to over-compensate in the low-frequency region so that high-frequency components appeared relatively strong. The MTFs with between 11- and 15-pixel SEs showed little variation. Compared to spatial or frequency filtering that eliminated baseline effects in the edge spread function, our algorithm performed better at precisely locating the edge position and the averaged LSF was narrower.

Calibration of ShadowCam

  • David Carl Humm;Mallory Janet Kinczyk;Scott Michael Brylow;Robert Vernon Wagner;Emerson Jacob Speyerer;Nicholas Michael Estes;Prasun Mahanti;Aaron Kyle Boyd;Mark Southwick Robinson
    • Journal of Astronomy and Space Sciences
    • /
    • v.40 no.4
    • /
    • pp.173-197
    • /
    • 2023
  • ShadowCam is a high-sensitivity, high-resolution imager provided by NASA for the Danuri (KPLO) lunar mission. ShadowCam calibration shows that it is well suited for its purpose, to image permanently shadowed regions (PSRs) that occur near the lunar poles. It is 205 times as sensitive as the Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC). The signal to noise ratio (SNR) is greater than 100 over a large part of the dynamic range, and the top of the dynamic range is high enough to accommodate most brighter PSR pixels. The optical performance is good enough to take full advantage of the 1.7 meter/pixel image scale, and calibrated images have uniform response. We describe some instrument artifacts that are amenable to future corrections, making it possible to improve performance further. Stray light control is very challenging for this mission. In many cases, ShadowCam can image shadowed areas with directly illuminated terrain in or near the field of view (FOV). We include thorough qualitative descriptions of circumstances under which lunar brightness levels far higher than the top of the dynamic range cause detector or stray light artifacts and the size and extent of the artifact signal under those circumstances.

A time delay estimation method using canonical correlation analysis and log-sum regularization (로그-합 규준화와 정준형 상관 분석을 이용한 시간 지연 추정에 관한 연구)

  • Lim, Jun-Seok;Pyeon, Yong-Gook;Lee, Seokjin;Cheong, MyoungJun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.4
    • /
    • pp.279-284
    • /
    • 2017
  • The localization of sources has a numerous number of applications. To estimate the position of sources, the relative time delay between two or more received signals for the direct signal must be determined. Although the GCC (Generalized Cross-Correlation) method is the most popular technique, an approach based on CCA (Canonical Correlation Analysis) was also proposed for the TDE (Time Delay Estimation). In this paper, we propose a new adaptive algorithm based on CCA in order to utilized the sparsity in the eigenvector of CCA based time delay estimator. The proposed algorithm uses the eigenvector corresponding to the maximum eigenvalue with log-sum regularization in order to utilize the sparsity in the eigenvector. We have performed simulations for several SNR(signal to noise ratio)s, showing that the new CCA based algorithm can estimate the time delays more accurately than the conventional CCA and GCC based TDE algorithms.

Robust Audio Watermarking Algorithm with Less Deteriorated Sound (음질 열화를 줄이고 공격에 강인한 오디오 워터마킹 알고리듬)

  • Kang, Myeong-Su;Cho, Sang-Jin;Chong, Ui-Pil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.7
    • /
    • pp.653-660
    • /
    • 2009
  • This paper proposes a robust audio watermarking algorithm for copyright protection and improvement of sound quality after embedding a watermark into an original sound. The proposed method computes the FFT (fast Fourier transform) of the original sound signal and divides the spectrum into a subbands. Then, it is necessary to calculate the energy of each subband and sort n subbands in descending order corresponding to its power. After calculating the energy we choose k subbands in sorted order and find p peaks in each selected subbands, and then embed a length m watermark around the p peaks. When the listeners hear the watermarked sound, they do not recognize any distortions. Furthermore, the proposed method is robust as much as Cox's method to MP3 compression, cropping, FFT echo attacks. In addition to this, the experimental results show that the proposed method is generally 10 dB higher than Cox's method in SNR (signal-to-noise ratio) aspect.

Singular Value Decomposition based Noise Reduction Technique for Dynamic PET I mage : Preliminary study (특이값 분해 기반 Dynamic PET 영상의 노이즈 제거 기법 : 예비 연구)

  • Pyeon, Do-Yeong;Kim, Jung-Su;Baek, Cheol-Ha;Jung, Young-Jin
    • Journal of radiological science and technology
    • /
    • v.39 no.2
    • /
    • pp.227-236
    • /
    • 2016
  • Dynamic positron emission tomography(dPET) is widely used medical imaging modality that can provide both physiological and functional neuro-image for diagnosing various brain disease. However, dPET images have low spatial-resolution and high noise level during spatio-temporal analysis (three-dimensional spatial information + one-dimensional time information), there by limiting clinical utilization. In order to overcome these issues for the spatio-temporal analysis, a novel computational technique was introduced in this paper. The computational technique based on singular value decomposition classifies multiple independent components. Signal components can be distinguished from the classified independent components. The results show that signal to noise ratio was improved up to 30% compared with the original images. We believe that the proposed computational technique in dPET can be useful tool for various clinical / research applications.

A Study on Optimal Bit Loading Algorithms for Discrete MultiTone ADSL (DMT 변조방식을 사용하는 ADSL에서의 최적 비트 할당 방식 연구)

  • 이철우;박광철;윤기방;장수영;김기두
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.4
    • /
    • pp.395-402
    • /
    • 2002
  • In the conventional public switched telephone network(PSTN), there are various types of modulation that can be used in ADSL to offer fast data communication, two of which are CAP(Carrierless Amplitude Phase) and DMT(Discrete MultiTone). As we consider the current situation, DMT is getting more predominant in the market than CAP. One of the reasons is that it gives high performance in spite of its high complexity Since DMT divides the full range of bandwidth into 256 sub-channels, it can be highly adaptive in the circumstances, where the problems of attenuation and noise caused by the propagation distance are very crucial. In this paper, a new bit loading algorithm for DMT modulation is proposed. The proposed algorithm can be efficiently implemented in a way that it requires less computation than the conventional modulation techniques. In contrast to the conventional algorithms which perform sorting processing, the proposed algorithm uses look-up tables to reduce the repetition of calculation. Consequently, it is shown that less processing time and lower complexity can be achieved.

Multi-Cell Transmit Diversity Scheme for OFDMA Systems (OFDMA 시스템을 위한 다중 셀 전송 다양성 기법)

  • Seo, Bangwon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.9
    • /
    • pp.721-727
    • /
    • 2012
  • Since a conventional multi-cell transmit diversity scheme depends on the feedback from the user for the channel gain information, its performance gets to severely degrade when the channel varies fast due to the high mobility of the user. Also, transmit power of the base station cannot be fully used in the conventional scheme because only one transmit antenna is used for data transmission. In this paper, we propose a multi-cell transmit diversity scheme appropriate for fast fading channel. In the proposed scheme, channel-independent precoding vector is applied over all transmit antennas and different precoding vectors are applied for neighboring subcarriers so that the received signal is avoided to experience deep fading over multiple neighboring subcarriers. Simulation results show that the proposed scheme has better detector output signal-to-noise ratio (SNR) and bit error rate (BER) performances than the conventional scheme.