• Title/Summary/Keyword: Signal to Interference and Noise Ratio

Search Result 442, Processing Time 0.029 seconds

Error Rate Performance of DS-BPSK Signal transmitted through a Hard-Limiting Satellite Channel in the presence of Interference and Noise (간섭과 잡음이 존재하는 Hard-Limiting 위성채널상에서의 DS-BPSK신호의 오율특성)

  • 신동일;조성준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.11 no.1
    • /
    • pp.64-72
    • /
    • 1986
  • The error rate equation fo DS-BPSK(Direct Sequence Binary Phase Shift Keying) signal transmitted through the nonlinear satellite transponder has been derived in the cochannel interference and downlink Gaussian noise environment. The input to the satellite transponder is the superposition of DS-BPSK signal with one interfere which is a cochannel wide-band PN signal. The error rate performance of DS-BPSK system has been evaluated and shown in figures in terms of carrier to interference power ratio(CIR), downlink signal to noise power ratio(downlink SNR) and process gain. In the analysis, it has been shown that the use of a hard limiter in DS-BPSK satellite system leads to the generation of narrow-band intermodulation products which is independent of the process gain. Also it is known that the error rate performance can be improved in the low levels (below 10dB) of CIR as the CIR increase. As the process gain varies from 10 to 100 the curve gives the about 10 dB gain in downlink SNR to maintain a fixed error rate.

  • PDF

Efficient ICI Self-Cancellation Scheme for OFDM Systems

  • Kim, Kyung-Hwa;Seo, Bangwon
    • ETRI Journal
    • /
    • v.36 no.4
    • /
    • pp.537-544
    • /
    • 2014
  • In this paper, we present a new inter-carrier interference (ICI) self-cancellation scheme - namely, ISC scheme - for orthogonal frequency-division multiplexing systems to reduce the ICI generated from phase noise (PHN) and residual frequency offset (RFO). The proposed scheme comprises a new ICI cancellation mapping (ICM) scheme at the transmitter and an appropriate method of combining the received signals at the receiver. In the proposed scheme, the transmitted signal is transformed into a real signal through the new ICM using the real property of the transmitted signal; the fast-varying PHN and RFO are estimated and compensated. Therefore, the ICI caused by fast-varying PHN and RFO is significantly suppressed. We also derive the carrier-to-interference power ratio (CIR) of the proposed scheme by using the symmetric conjugate property of the ICI weighting function and then compare it with those of conventional schemes. Through simulation results, we show that the proposed ISC scheme has a higher CIR and better bit error rate performance than the conventional schemes.

Pulse Integration Technique for VTS Application (VTS 적용을 위한 펄스 적분 기법)

  • Park, Dong-Hwa;Jeong, Se-Young;Choi, Kwan-Beum;Kim, Byung-Doo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.7
    • /
    • pp.521-527
    • /
    • 2014
  • Most of Sea Surveillance Radar(SSR)s which are used in Vessel Traffic Service are Magnetron-based Non-Coherent Method and use the pulse integration technique having a signal to noise ratio enhancement function to satisfy a surveillance performance about target. Especially, Pulse Integration technique has an effect on target serveillance performance through signal to noise ratio, in addition, has an effect to improve a signal interference and noise spike. In this paper, we have a simulation experiment by using MATLAB simulation tool for appling a pulse integration technique in VTS system using a Non-Coherent radar, and verify an optimum pulse integration technique through out performance analysis between frequently use pulse integration techniques.

Receive Diversity for OFDM Systems with Cochannel Interference (동일 채널 간섭을 고려한 OFDM 시스템의 수신 다이버시티 기법)

  • Seo Bo-Seok
    • Journal of Broadcast Engineering
    • /
    • v.11 no.2 s.31
    • /
    • pp.222-228
    • /
    • 2006
  • In this paper, we propose a receive diversity method for orthogonal frequency division multiplexing (OFDM) systems with cochannel interference. In the method, combining is done in the frequency domain by using the subcarrier based maximum ratio combining (MRC) method. For MRC, we exploit the power of cochannel interference as well as the power of channel noise. The accuracy of the power estimate of interference plus noise is enhanced by averaging the initial estimates over the correlated subchannels where the coherency between the subchannel gains comes from the limited delay spread of the channel. Simulation results show that the proposed method yields 2-3.5dB gain of signal to noise ratio compared to the conventional MRC method and less than 1 dB difference to the ideal case.

Interference of FDM-FM Signal upon PSK Signal (PSK 신호에 대한 FDM-FM 신호의 섭간영향)

  • 이형재;이대령;조성준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.6 no.1
    • /
    • pp.21-26
    • /
    • 1981
  • The effect of wideband FDM-FM signal on binary CPSK signal in an interchannel interference environment has been investigated. A general equation of the bir error rate of binary CPSK signal with cochannel and adjacent channel interference from FDM-FM signal has been derived. The numerical results are given in graphs as the functions of carrier to noise ratio (CNR), carrier to interference ratio(CIR) and normalized carrier separation between PSK and FM signals. The results obtained can be used om desogmomg tje freqiemcy allocation, bandwidths and powers of PSK and FM signals in same radio frequency (RF) bands.

  • PDF

Beam Selection Algorithm Utilizing Fingerprint DB Based on User Types in UAV Support Systems

  • Jihyung Kim;Yuna Sim;Sangmi Moon;Intae Hwang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.9
    • /
    • pp.2590-2608
    • /
    • 2023
  • The high-altitude and mobility characteristics of unmanned aerial vehicles (UAVs) have made them a key element of new radio systems, particularly because they can exceed the limits of terrestrial networks. However, at high altitudes, UAVs can be significantly affected by intercell interference at a high line-of-sight probability. To mitigate this drawback, we propose an algorithm that selects the optimal beam to reduce interference and maximize transmission efficiency. The proposed algorithm comprises two steps: constructing a user-location-based fingerprint database according to the user types presented herein and cooperative beam selection. Simulations were conducted using cellular cooperative downlink systems for analyzing the performance of the proposed method, and the signal-to-interference-plus-noise cumulative distribution function and spectral efficiency cumulative distribution function were used as performance analysis indicators. Simulation results showed that the proposed algorithm could reduce the effect of interference and increase the performance of the desired signal. Moreover, the algorithm could efficiently reduce overheads and system cost by reducing the amount of resources required for information exchange.

Performance of Interference Mitigation with Different Wavelets in Global Positioning Systems

  • Seo, Bo-Seok;Park, Kwi-Woo;Park, Chansik
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.4
    • /
    • pp.165-173
    • /
    • 2019
  • In this paper, we apply a discrete wavelet packet transform (DWPT) to reduce the influence of interference in global positioning system (GPS) signals and compare the interference mitigation performance of various wavelets. By applying DWPT to the received signal, we can gradually divide the received signal band into low-pass and high-pass bands. After calculating the average power for the separate bands, we can determine whether there is interference by comparing the value with the given threshold. For a band that includes interference, we can reconstruct the whole band signal using inverse DWPT (IDWPT) after applying a nulling method that sets all of the wavelet coefficients to 0. The reconstructed signals are correlated with the pseudorandom noise (PRN) codes to acquire GPS signals. The performance evaluation is based on the number of satellite signals whose peak ratio (defined as the ratio of the first and second correlation peak values in the acquisition stage) exceeds the threshold. In this paper, we compare and evaluate the performance of 6 wavelets including Haar, Daubechies, Symlets, Coiflets, Biorthogonal Splines, and Discrete Meyer.

Analysis of Phase Noise and HPA Non-linearity in the OFDM/FH Communication System (OFDM/FH 시스템에서 위상잡음과 비선형 HPA의 특성분석)

  • Li, Ying-Shan
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.649-659
    • /
    • 2003
  • OFDM/FH communication system Is widely used in the wireless communication for the large capacity and high-speed data transmission. However, phase noise and PAPR (peak-to-average power ratio) are the serious problems causing performance impairment. In this paper, PLL (phase locked loop) frequency synthesizer with high switching speed is used for the phase noise model. SSPA and TWTA are considered for the nonlinear HPA model. Under these conditions and by approximating $e^{j{\phi}[m]}$ into $1 + j{\phi}[m]-\frac{1}{2}{\phi}^2[m]$ for the phase noise nonlinear approximation, SINR (signal-to-interference-noise-ratio) with nonlinear HPA and phase noise is derived in the OFDM/FH system. The bit error probabilities (BER) are found by computer simulation method and semi-analytical method. The simulation results closely match with the semi-analytical results.

  • PDF

Adaptive array processing (적응 어레이 프로세싱)

  • 이상철
    • 전기의세계
    • /
    • v.29 no.9
    • /
    • pp.584-593
    • /
    • 1980
  • Conventional radar antenna systems are susceptible to performance degradation caused by unwanted signals received via the antenna sidelobes and/or mainlobes. Adaptive array systems offer possible solution to this interference problem by automatically steering nulls to unwanted signals providing significant system performance improvement. Another important andvantage of the adaptive array is its self-optimization capability which uses the collective incoming noise data for the nulling purposes. This paper provides a tutorial introduction to adaptive arrays as well as some new development of recent research in this area. Optimum link between the antenna theory and signal processing has been sought by illustrating the gain patterns and output signal-to-noise ratio. Signal acqusition methods are shown including a new attempt of the use of spread-spectrum techniques in conjuction with array systems.

  • PDF

Development of a Low-Noise Amplifier System for Nerve Cuff Electrodes (커프 신경전극을 위한 저잡음 증폭기 시스템 개발)

  • Song, Kang-Il;Chu, Jun-Uk;Suh, Jun-Kyo Francis;Choi, Kui-Won;Yoo, Sun-K.;Youn, In-Chan
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.1
    • /
    • pp.45-54
    • /
    • 2011
  • Cuff electrodes have a benefit for chronic electroneurogram(ENG) recording while minimizing nerve damage. However, the ENG signals are usually contaminated by electromyogram(EMG) activity from the surrounding muscle, the thermal noise generated within the source resistance, and the electric noise generated primarily at the first stage of the amplifier. This paper proposes a new cuff electrode to reduce the interference of EMG signals. An additional middle electrode was placed at the center of cuff electrode. As a result, the proposed cuff electrode achieved a higher signal-to-interference ratio compared to the conventional tripolar cuff. The cuff electrode was then assembled together with closure, headstage, and hermetic case including electronic circuits. This paper also presents a lownoise amplifier system to improve signal-to-noise ratio. The circuit was designed based on the noise analysis to minimize the electronic noise. The result shows that the total noise of the amplifier was below $1{\mu}V_{rms}$ for a cuff impedance of $1\;k{\Omega}$ and the common-mode rejection ratio was 115 dB at 1 kHz. In the current study, the performance of nerve cuff electrode system was evaluated by monitoring afferent nerve signals under mechanical stimuli in a rat animal model.