• Title/Summary/Keyword: Signal peptidase

Search Result 24, Processing Time 0.028 seconds

Development of a Highly Efficient Protein-Secreting System in Recombinant Lactobacillus casei

  • Kajikawa, Akinobu;Ichikawa, Eiko;Igimi, Shizunobu
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.2
    • /
    • pp.375-382
    • /
    • 2010
  • The available techniques for heterologous protein secretion in Lactobacillus strains are limited. The aim of the present study was to develop an efficient protein-secretion system using recombinant lactobacilli for various applications such as live delivery of biotherapeutics. For the construction of expression vectors, the Lactobacillus brevis slpA promoter, Lactobacillus casei prtP signal sequence, and mouse IL-10 sequences were used as a model system. Interestingly, the slpA promoter exhibited strong activity in L. casei, contrary to previous observations. In order to stabilize replication of the plasmid in E. coli, a removable terminator sequence was built into the promoter region. For the improvement of secretion efficiency, a DTNSD oligopeptide was added to the cleavage site of signal peptidase. The resulting plasmids provided remarkably efficient IL-10 secretion. Accumulation of the protein in the culture supernatant varied widely according to the pH conditions. By analysis of the secreted protein, formation of homodimers, and biological activity, IL-10 was confirmed to be functional. The presently constructed plasmids could be useful tools for heterologous protein secretion in L. casei.

Optimization of the Expression of the Ferritin Protein Gene in Pleurotus eryngii and Its Biological Activity (큰느타리버섯에서 석충 페리틴 단백질 유전자의 발현 최적화 및 생물학적 활성)

  • Woo, Yean Jeong;Oh, Si Yoon;Choi, Jang Won
    • The Korean Journal of Mycology
    • /
    • v.47 no.4
    • /
    • pp.359-371
    • /
    • 2019
  • To optimize the expression and secretion of ferritin protein associated with ion storage in the mushroom, Pleurotus eryngii, a recombinant secretion vector, harboring the ferritin gene, was constructed using a pPEVPR1b vector under the control of the CaMV 35S promoter and signal sequence of pathogen related protein (PR1b). The ferritin gene was isolated from the T-Fer vector following digestion with EcoRI and HindIII. The gene was then introduced into the pPEVPR1b secretion vector, and it was then named pPEVPR1b-Fer. The recombinant vector was transferred into P. eryngii via Agrobacterium tumefaciens-mediated transformation. The transformants were selected on MCM medium supplemented with kanamycin and its expression was confirmed by SDS-PAGE and western blotting. Expression of ferritin protein was optimized by modifying the culture conditions such as incubation time and temperature in batch and 20 L airlift type fermenter. The optimal conditions for ferritin production were achieved at 25℃ and after incubating for 8 days on MCM medium. The amount of ferritin protein was 2.4 mg/g mycelia, as measured by a quantitative protein assay. However, the signal sequence of PR1b (32 amino acids) seems to be correctly processed by peptidase and ferritin protein may be targeted in the apoplast region of mycelia, and it might not be secreted in the culture medium. The iron binding activity was confirmed by Perls' staining in a 7.5% non-denaturing gel, indicating that the multimeric ferritin (composed of 24 subunits) was formed in P. eryngii mycelia. Mycelium powder containing ferritin was tested as a feed additive in broilers. The addition of ferritin powder stimulated the growth of young broilers and improved their feed efficiency and production index.

Cloning of Pig Kidney cDNA Encoding an Angiotensin I Converting Enzyme (돼지 신장의 Angiotensin I Converting Enzyme cDNA 클로닝)

  • Yoon, Jang-Ho;Yoon, Joo-Ok;Hong, Kwang-Won
    • Applied Biological Chemistry
    • /
    • v.49 no.4
    • /
    • pp.293-297
    • /
    • 2006
  • Angiotensin converting enzyme(ACE) is a zinc-containing dipeptidase widely distributed in mammalian tissues and is thought to play a significant role in blood pressure regulation by hydrolyzing angiotensin I to the potent vasoconstrictor, angiotensin II. Recently, the presence of ACE in pig ovary was reported and the ACE from pig kidney was isolated and characterized. However no nucleotide sequence of the ACE gene from pig is yet known. We report here the cloning of the ACE cDNA from pig kidney by using the reverse transcriptase-polymerase chain reaction. The complete amino acid sequence deduced from the cDNA contains 1309 residues with a molecular mass of 150 kDa, beginning with a signal peptide of 33 amino acids. Amino acid sequence analysis showed that pig kidney ACE is also probably anchored by a short transmembrane domain located near the C-terminus. This protein contains a tandem duplication of the two homologous amino acid peptidase domain. Each of these two domains bears a putative metal-binding site (His-Glu-Met-Gly-His) identified in mammalian somatic ACE. The alignment of pig ACE amino acid sequence with human, rabbit, and mouse reveals that both two domains have been highly conserved during evolution.

Neurobiology of Depression (우울증의 신경생물학)

  • Kim, Young-Hoon;Lee, Sang-Kyeong;Rhee, Chung-Goo;Kim, Jeong-Ik
    • Korean Journal of Biological Psychiatry
    • /
    • v.6 no.1
    • /
    • pp.3-11
    • /
    • 1999
  • At the beginning, researches on the biology of depression or affective illness have focused mainly on the receptor functions and neuroendocrine activities. And the studies of the past years did not break new theoretical background, but the recent advances in the research on the molecular mechanisms underlying neural communication and signal transduction do add some insights to many established ideas. This article will overview some of the more recent advances in the clinical researches of depression. Our major concerns to be presented here include the followings : (1) alterations in the post-synaptic neural transduction ; (2) changes in the neurons of hypothalamic neuropeptides ; (3) decreased peptidase enzyme activities ; (4) associations of hypothalamic-pituitary-adrenal axis abnormalities with serotonin neurotransmission ; (5) role of serotonin transporter ; (6) changes in the responsiveness of intracellular calcium ion levels ; (7) the inositol deficiency theory of lithium and depression ; (8) the transcription factors including immediate early genes ; (9) recent genetic studies in some families. This brief overview will suggest that changes in DNA occur during antidepressant therapy. These changes at the DNA level initiating a cascade of events underlying antidepressant modality will give us the insights on the molecular biological basis of the pathogenesis of depression and cues for a new class of antidepressants.

  • PDF

Stable Secretion Vector Derived from the RCR (rolling-circle replication) Plasmid of Bacillus mesentericus

  • Suh, Joo-Won;Lee, Seung-Soo;Han, Jeong-Wun;Yang, Young-Yell;Hong, Soon-Kwang;Lee, In-Hyung
    • Journal of Microbiology
    • /
    • v.40 no.2
    • /
    • pp.140-145
    • /
    • 2002
  • The 5.8 kb pMMH1, rolling-circle replication (RCR) plasmid of the wild type soil Bacillus mesentericus was developed into a novel secretion vector system in Bacillus subtilis. The pMMHl turned out to have a replication origin and two open reading frames (ORFs) of the putative γ-GTP and type I signal peptidase (sipP). To characterize the regions necessary for plasmid stability and high copy number, five vectors (pPS, pPP, pEN, pMN, pME) were constructed by disruption or deletion of each region in pMMH1. Like pMMHl all constructed vectors were stable over 100 generations In a non-selective medium. Since pPS was the smallest (2.3 kb)of all, it was selected for the construction of a navel secretion vector, Using the $\alpha$-amylase promoter/signal sequence of B. subtilils the novel plasmid pJSN was constructed. When $\beta$-glucosidase was expressed using pJSN, we found $\beta$-glucosidase activity in the medium. This result strongly suggested that plasmid pJSN can be used for the production of bioactive peptides in B. subtilis.

Exploring the Catalytic Significant Residues of Serine Protease Using Substrate-Enriched Residues and a Peptidase Inhibitor

  • Khan, Zahoor;Shafique, Maryam;Zeb, Amir;Jabeen, Nusrat;Naz, Sehar Afshan;Zubair, Arif
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.1
    • /
    • pp.65-74
    • /
    • 2021
  • Serine proteases are the most versatile proteolytic enzymes with tremendous applications in various industrial processes. This study was designed to investigate the biochemical properties, critical residues, and the catalytic potential of alkaline serine protease using in-silico approaches. The primary sequence was analyzed using ProtParam, SignalP, and Phyre2 tools to investigate biochemical properties, signal peptide, and secondary structure, respectively. The three-dimensional structure of the enzyme was modeled using the MODELLER program present in Discovery Studio followed by Molecular Dynamics simulation using GROMACS 5.0.7 package with CHARMM36m force field. The proteolytic potential was measured by performing docking with casein- and keratin-enriched residues, while the effect of the inhibitor was studied using phenylmethylsulfonyl fluoride, (PMSF) applying GOLDv5.2.2. Molecular weight, instability index, aliphatic index, and isoelectric point for serine protease were 39.53 kDa, 27.79, 82.20 and 8.91, respectively. The best model was selected based on the lowest MOLPDF score (1382.82) and DOPE score (-29984.07). The analysis using ProSA-web revealed a Z-score of -9.7, whereas 88.86% of the residues occupied the most favored region in the Ramachandran plot. Ser327, Asp138, Asn261, and Thr326 were found as critical residues involved in ligand binding and execution of biocatalysis. Our findings suggest that bioengineering of these critical residues may enhance the catalytic potential of this enzyme.

The Slough of Cicadidae Periostracum Ameliorated Lichenification by Inhibiting Interleukin (IL)-22/Janus Kinase (JAK) 1/Signal Transducer and Activator of Transcription (STAT) 3 Pathway in Atopic Dermatitis

  • Ganghye Park;Namgyu Kwon;Mi Hye Kim;Woong Mo Yang
    • Food Science of Animal Resources
    • /
    • v.43 no.5
    • /
    • pp.859-876
    • /
    • 2023
  • It is known that animal-origin medicine could be one of effective treatment to remedy atopic dermatitis (AD) by controlling the cytokines. Cicadidae Periostracum (CP), the slough of Cryptotympana pustulata, has been frequently used for treating AD and skin affliction in traditional Korean Medicine. This study is aimed at investigating the ameliorating effects of CP on AD and its potential mechanism. The dinitrochlorobenzene sensitized mice were treated with CP for 2 weeks. The various biomarkers and the dermatitis scores presented that CP treatment can induce the visual and biological improvements of AD model. Pruritus, the most serious symptom of AD, which can cause repeated scratching behaviors and finally lead to lichenification, was reduced with CP treatment by regulating the inflammatory reactions. In addition, CP treatment diminished the number of mast cells that are known for causing inflammatory reactions. Moreover, it is proven that CP can decline secretion of interleukin-22, which means CP treatment has anti-inflammatory effects. CP treatment can correct the imbalance of helper T (Th)1 and Th2, downregulating thymic stromal lymphopoietin that leads to decrease of mRNA level of inflammatory cytokines. The crucial role of CP treatment is controlling of the Janus kinase 1/signal transducer and activator of transcription 3 pathway. In addition, CP treatment has the inhibitory effects on kallikrein related peptidase (KLK) 5 and KLK7. Taken together, CP treatment can ameliorate most symptoms and problems caused by AD disease, improving the AD patients' life quality.

Strategic construction of mRNA vaccine derived from conserved and experimentally validated epitopes of avian influenza type A virus: a reverse vaccinology approach

  • Leana Rich Herrera-Ong
    • Clinical and Experimental Vaccine Research
    • /
    • v.12 no.2
    • /
    • pp.156-171
    • /
    • 2023
  • Purpose: The development of vaccines that confer protection against multiple avian influenza A (AIA) virus strains is necessary to prevent the emergence of highly infectious strains that may result in more severe outbreaks. Thus, this study applied reverse vaccinology approach in strategically constructing messenger RNA (mRNA) vaccine construct against avian influenza A (mVAIA) to induce cross-protection while targeting diverse AIA virulence factors. Materials and Methods: Immunoinformatics tools and databases were utilized to identify conserved experimentally validated AIA epitopes. CD8+ epitopes were docked with dominant chicken major histocompatibility complexes (MHCs) to evaluate complex formation. Conserved epitopes were adjoined in the optimized mVAIA sequence for efficient expression in Gallus gallus. Signal sequence for targeted secretory expression was included. Physicochemical properties, antigenicity, toxicity, and potential cross-reactivity were assessed. The tertiary structure of its protein sequence was modeled and validated in silico to investigate the accessibility of adjoined B-cell epitope. Potential immune responses were also simulated in C-ImmSim. Results: Eighteen experimentally validated epitopes were found conserved (Shannon index <2.0) in the study. These include one B-cell (SLLTEVETPIRNEWGCR) and 17 CD8+ epitopes, adjoined in a single mRNA construct. The CD8+ epitopes docked favorably with MHC peptidebinding groove, which were further supported by the acceptable ∆Gbind (-28.45 to -40.59 kJ/mol) and Kd (<1.00) values. The incorporated Sec/SPI (secretory/signal peptidase I) cleavage site was also recognized with a high probability (0.964814). Adjoined B-cell epitope was found within the disordered and accessible regions of the vaccine. Immune simulation results projected cytokine production, lymphocyte activation, and memory cell generation after the 1st dose of mVAIA. Conclusion: Results suggest that mVAIA possesses stability, safety, and immunogenicity. In vitro and in vivo confirmation in subsequent studies are anticipated.

Development of a Protein Secretion System with the Application of Sec-dependent Protein Secretion Components

  • Kim, Sam-Woong;Kim, Young-Hee;Yoo, Ah-Young;Yu, Jong-Earn;Hur, Jin;Lee, John-Hwa;Cha, Jae-Ho;Kang, Ho-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.8
    • /
    • pp.1316-1323
    • /
    • 2007
  • In order to induce high levels of protein secretion, we have constructed a recombinant plasmid, designated pBP244, into which was incorporated key components of the type-II See-dependent secretion system, including LepB (signal peptidase), SecA (ATPase), and SecB (chaperone). The biological activities of the LepB, SecA, and SecB components expressed from genes harbored by pBP244 appeared to play their normal roles. In order to evaluate the protein secretion, a pspA (Streptococcus $\underline{p}neumoniae\;\underline{s}urface\;\underline{p}rotein\;\underline{A}$) gene was cloned into pBP244, resulting in pBP438. S. typhimurium harboring pBP438 grown until the stationary phase, secreted a higher level of PspA into the culture supernatants than did the strain harboring pYA3494. The strain harboring pBP438 secreted a supernatant amount 1.71-fold, a periplasmic space amount 1.47-fold, and an outer membrane amount 1.49-fold higher than that of pYA3494. S. typhimurium ${\chi}8554$ kept the $Asd^+$ plasmid pBP244 and pBP438 for 60 generations in LB broth harboring DAP, thereby indicating that pBP244 and pBP438 were quite stable in the Salmonella strain.

The Two-Component Protease NS2B-NS3 of Dengue Virus Type 2: Cloning, Expression in Escherichia coli and Purification of the NS2B, NS3(pro) and NS2B-NS3 Proteins

  • Champreda, Veerawat;Khumthong, Rabuesak;Subsin, Benchamas;Angsuthanasombat, Chanan;Panyim, Sakol;Katzenmeier, Gerd
    • BMB Reports
    • /
    • v.33 no.4
    • /
    • pp.294-299
    • /
    • 2000
  • Proteolytic processing of the dengue virus serotype 2 polyprotein precursor is catalyzed by a host signal peptidase and a virus encoded two-component protease consisting of the nonstructural proteins, NS2B and NS3. We expressed in Escherichia coli the NS2B, NS3(pro) and NS2B-NS3 proteins from the dengue virus type 2 strain 16681 as N-terminal fusions with a hexahistidine affinity tag under the control of the inducible trc promoter. All fusion proteins were purified to >90% purity by detergent extraction of inclusion bodies and a single step metal chelate chromatography. Proteins were refolded on-column and recovered with yields of 0.5, 6.0 and 1.0 mg/l of E. coli culture that was grown to $OD_{600}=1.0$ for NS2B, NS3(pro) and NS2B-NS3, respectively. Purified proteins gave strong signals in Western blots using $Ni^{2+}-nitrilotriacetic$ acid as a probe for the presence of the polyHis tag. During the purification process, $(His)_{6}NS2B-NS3$ was apparently not autoproteolytically cleaved at the NS2B/NS3 site.

  • PDF