• 제목/요약/키워드: Signal Tracking Loop

검색결과 116건 처리시간 0.028초

GPS L1/L2C/L5 수신기를 위한 적응 코드추적루프 설계 (Design of a Adaptive Code Tracking Loop for GPS L1/L2C/L5 Receivers)

  • 최현호;임덕원;이상욱;김지훈;이상정
    • 제어로봇시스템학회논문지
    • /
    • 제17권3호
    • /
    • pp.283-288
    • /
    • 2011
  • In this paper, an adaptive signal tracking loop for a GPS L1/L2C/L5 receiver is designed. The design parameters is adjusted according to the receiver's operating conditions such as the signal strength and the receiver dynamics by using the different characteristics of GPS L1, L2C and L5 signal. Simulation results show that the tracking accuracy of the proposed signal tracking loop is better than those of L1, L2C and L5 only signal tracking loop.

THE EFFECT OF MASKED SIGNAL ON THE PERFORMANCE OF GNSS CODE TRACKING SYSTEM

  • Chang, Chung-Liang;Juang, Jyh-Ching
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.2
    • /
    • pp.223-228
    • /
    • 2006
  • The main purpose of this paper is to describe the code tracking performance of a non-coherent digital delay lock loop (DLL) or coherent DLL while tracking GNSS signal in the presence of signal masking. The masking effect is usually caused by buildings that obscure the signal in either a periodic or random manner. In some cases, ideal masking is used to remove random or periodic interference. Three types of the masked signal are considered - no masking, periodic masking, and random masking of the signal input to the receiver. The mean time to lose lock (MTLL) of the code tracking loop are evaluated, and some numerical result and simulation results are reported. Finally, the steadystate tracking errors on the performance of the tracking loop in interference environment are also presented.

  • PDF

칼만필터 기반의 통합 GPS 수신기 추적루프 설계 (Design of Combined GPS Signal Tracking Loop based on Kalman Filter)

  • 송종화;지규인;김광훈
    • 제어로봇시스템학회논문지
    • /
    • 제14권9호
    • /
    • pp.939-947
    • /
    • 2008
  • The GPS tracking loop consists of three parts in general: discriminator, loop filter and DCO (Digitally Controlled Oscillator). The loop filter is the main part of the tracking loop designed to ensure a good tracking performance. Generally, the loop filter is designed using classical PI(Proportional Integral) control. Although the carrier Doppler and code Doppler are generated by the same relative movement between the satellite and the user, often, the loop filters for each tracking loop are designed separately and independently. Sometimes, they are used in a combined manner such as carrier aided code tracking, FLL assisted PLL, etc. For better GPS signal tracking, we need to design the FLL/PLL/DLL altogether optimally. The purpose of this paper is to design a GPS receiver tracking loop based on the Kalman filter in a combined manner. Also, the proposed GPS receiver tracking loop is compared with a conventional tracking loop in terms of the transfer function and the DCO input. This paper shows that conventional tracking loop is equal to the Kalman filter based tracking loop.

3GPP 모뎀용 동기 추적회로의 설계 및 성능 분석 (Design and Performance Analysis of a Noncoherent Code Tracking Loop for 3GPP MODEM)

  • 양연실;박형래
    • 한국통신학회논문지
    • /
    • 제28권12A호
    • /
    • pp.983-990
    • /
    • 2003
  • 본 논문에서는 3GPP 모뎀용 비동기식 동기추적회로(noncoherent code tracking loop)를 설계하고 설계된 회로의 정상상태 지터 분산(steady-state jitter variance)과 과도응답 특성(transient response characterisitc)을 해석한다. 먼저, AWGN 환경에서의 지터 분산을 펄스성형 필터(pulse-shaping filter), 타이밍 오프셋(timing offset), 신호 대잡음비(signal-to-interference ratio), 루우프 대역폭(loop bandwidth)에 대한 일반식으로 유도하고, 과도응답 특성을 이론적으로 해석한다. 이를 바탕으로, 디지털 하드웨어 구현이 용이한 가변 대역폭 동기추적회로를 설계하며 설계된 회로와 고정 대역폭 시스템의 성능을 이론적으로 비교, 분석하고 컴퓨터 시뮬레이션을 통해 검증한다.

Frequency Tracking Error Analysis of LQG Based Vector Tracking Loop for Robust Signal Tracking

  • Park, Minhuck;Kee, Changdon
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제9권3호
    • /
    • pp.207-214
    • /
    • 2020
  • In this paper, we implement linear-quadratic-Gaussian based vector tracking loop (LQG-VTL) instead of conventional extended Kalman filter based vector tracking loop (EKF-VTL). The LQG-VTL can improve the performance compared to the EKF-VTL by generating optimal control input at a specific performance index. Performance analysis is conducted through two factors, frequency thermal noise and frequency dynamic stress error, which determine total frequency tracking error. We derive the thermal noise and the dynamic stress error formula in the LQG-VTL. From frequency tracking error analysis, we can determine control gain matrix in the LQG controller and show that the frequency tracking error of the LQG-VTL is lower than that of the EKF-VTL in all C/N0 ranges. The simulation results show that the LQG-VTL improves performance by 30% in Doppler tracking, so the LQG-VTL can extend pre-integration time longer and track weaker signals than the EKF-VTL. Therefore, the LQG-VTL algorithm is more robust than the EKF-VTL in weak signal environments.

INS 속도 정보를 사용한 GPS 반송파 추적 루프의 성능 향상 (Performance Improvement of INS Velocity-aided GPS Carrier Tracking Loop)

  • 김정원;이상정;황동환
    • 제어로봇시스템학회논문지
    • /
    • 제12권8호
    • /
    • pp.739-745
    • /
    • 2006
  • This paper presents performance improvement of the INS velocity-adided GPS carier tracking loop. To this end, INS velocity-aided GPS carrier tracking loop was modeled as a feedfoward and a feedback loop system. In the phase tracking loop, it was shown that the tracking error caused by the dynamic motion of the vehicle can be compensated with the aiding of the INS information irrespective of the loop order and bandwidth. However, the signal trcking error increases as the INS error increases. It was also shown that in order to remove the tracking error caused by INS bias error, more than or equal to 2nd order PLL should be used. Experiments were carried out and the experimental results were compared with the analysis results.

Carrier Tracking Loop using the Adaptive Two-Stage Kalman Filter for High Dynamic Situations

  • Kim, Kwang-Hoon;Jee, Gyu-In;Song, Jong-Hwa
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권6호
    • /
    • pp.948-953
    • /
    • 2008
  • In high dynamic situations, the GPS carrier tracking loop requires a wide bandwidth to track a carrier signal because the Doppler frequency changes more rapidly with time. However, a wide bandwidth allows noises within the bandwidth of the tracking loop to pass through the loop filter. As these noises are used in the numerical controlled oscillator(NCO), the carrier tracking loop of a GPS receiver shows a degraded performance in high dynamic situations. To solve this problem, an adaptive two-stage Kalman filter, which offers the NCO a less noisy phase error, can be used. This filter is based on a carrier phase dynamic model and can adapt to an incomplete dynamic model and a quickly changed Doppler frequency. The performance of the proposed tracking loop is verified by several simulations.

강인추적 제어를 이용한 자율 무인 잠수정의 심도제어 (Depth Control of Autonomous Underwater Vehicle Using Robust Tracking Control)

  • 채창현
    • 한국기계가공학회지
    • /
    • 제20권4호
    • /
    • pp.66-72
    • /
    • 2021
  • Since the behavior of an autonomous underwater vehicle (AUV) is influenced by disturbances and moments that are not accurately known, the depth control law of AUVs must have the ability to track the input signal and to reject disturbances simultaneously. Here, we proposed robust tracking control for controlling the depth of an AUV. An augmented closed-loop system is represented by an error dynamic equation, and we can easily show the asymptotic stability of the overall system by using a Lyapunov function. The robust tracking controller is consisted of the internal model of the command signal and a state feedback controller, and it has the ability to track the input signal and reject disturbances. The closed-loop control system is robust to parameter uncertainties. Simulation results showed the control performance of the robust tracking controller to be better than that of a P + PD controller.

GPS L1/갈릴레오 E1 복합신호처리를 통한 위치정확도 향상 연구 (A Study on Enhanced Accuracy using GPS L1 and Galileo E1 Signal Combined Processing)

  • 신천식;이상욱;윤동원
    • 한국위성정보통신학회논문지
    • /
    • 제6권1호
    • /
    • pp.68-74
    • /
    • 2011
  • 본 논문은 GPS L1신호와 갈릴레오 E1 신호를 복합 신호처리를 통한 위치정확도 성능향상 연구결과를 제시하였다. GNSS 수신기에서의 신호획득 및 추적과정의 성능 향상시키기 위해 복수개의 누적기, 판별기 및 루프 필터 모듈을 적용하였고, 소프트웨어 측정 결과와 하드웨어 측정결과를 성능 비교하였다, 또한 추적과정에 대한 성능비교는 정확도와 민감도 측면에서만 다루었으며 갈릴레오 E1 신호처리를 위한 DLL(Delay Lock Loop) 판별기는 power early late 타입을 적용하여 성능을 검증하였다.

HSDPA 모뎀용 동기추적회로의 설계 및 성능분석 (Design and Performance Analysis of Non-coherent Code Tracking Loops for HSDPA MODEM)

  • 양연실;박형래
    • 한국항행학회논문지
    • /
    • 제7권1호
    • /
    • pp.6-13
    • /
    • 2003
  • 본 논문에서는 3GPP HSDPA 모뎀용 비동기식 동기추적회로를 설계하고, 설계된 동기추적회로에 대하여 정상상태 지터 분산과 타이밍 에러의 과도응답 특성을 이론적으로 분석하였다. 우선 AWGN 환경에서의 지터 분산을 펄스성형 필터, 타이밍 오프셋, 신호 대 잡음비, 루프 대역폭에 대한 식으로 유도하였으며, 과도응답 특성 또한 이론적으로 해석하였다. 끝으로 설계된 동기추적회로의 성능을 컴퓨터 시뮬레이션을 통하여 확인하였다.

  • PDF