• Title/Summary/Keyword: Signal Evaluation

Search Result 1,921, Processing Time 0.041 seconds

Robust Feature Extraction for Voice Activity Detection in Nonstationary Noisy Environments (음성구간검출을 위한 비정상성 잡음에 강인한 특징 추출)

  • Hong, Jungpyo;Park, Sangjun;Jeong, Sangbae;Hahn, Minsoo
    • Phonetics and Speech Sciences
    • /
    • v.5 no.1
    • /
    • pp.11-16
    • /
    • 2013
  • This paper proposes robust feature extraction for accurate voice activity detection (VAD). VAD is one of the principal modules for speech signal processing such as speech codec, speech enhancement, and speech recognition. Noisy environments contain nonstationary noises causing the accuracy of the VAD to drastically decline because the fluctuation of features in the noise intervals results in increased false alarm rates. In this paper, in order to improve the VAD performance, harmonic-weighted energy is proposed. This feature extraction method focuses on voiced speech intervals and weighted harmonic-to-noise ratios to determine the amount of the harmonicity to frame energy. For performance evaluation, the receiver operating characteristic curves and equal error rate are measured.

The Design and Implementation of a C-Band Microwave Radiometer Receiver (C-band Microwave Radiometer의 수신기 설계 및 제작)

  • Kim, Sang-Bong;Son, Hong-Min
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.115-120
    • /
    • 2005
  • A c-band microwave radiometer receiver for river mouth water temperature remote sensing was designed and implemented The developed receiver operated at 5.1GHz frequency with 70MHz bandwidth. It had high gain of 50dB and low noise figure of 2dB. Also we executed efficiency evaluation about detection capability of the receiver with noise source similar input signal. The experiment results showed that the c-band receiver successfully detected the antenna temperature range from 193K to 300K.

  • PDF

Design and Application of Magnetic Damper for Reducing Rotor Vibration (회전체 진동 감소를 위한 마그네틱 댐퍼의 설계 및 응용)

  • Kim, Young-Bae;Yi, Hyeong-Bok;Lee, Bong-Ki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.355-361
    • /
    • 2000
  • In this study, active control magnetic actuator for reducing vibration of rotor system is performed. Identification, modeling, simulation, control system design, and evaluation of active magnetic damper system have been researched. Power amplifier modeling, connected magnetic actuator and augmented by system identification, is included to establish a magnetic damper simulation which provides close performance correspondence to the physical plant. A magnetic actuator, digital controller using DSP(Digital Signal Processor), and bipolar operational power supply/amplifiers are developed to show the effectiveness of reducing rotor vibration. Also the curve fitting procedure to obtain the transfer function of frequency dependent components is developed. Two kinds of test are executed as sliding and oil bearing. Results presented in this paper will provide a well-defined technical parameters in designing magnetic damper system for the proposed rotor.

Ambient Vibration-Measurement of Real Building Structure by Using Fiber Optic Accelerometer System

  • Kim, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.6
    • /
    • pp.373-379
    • /
    • 2006
  • Vibration-based structural health monitoring is one of non-destructive evaluation (NDE) techniques for civil infrastructures. This paper presents a novel fiber optic accelerometer system to monitor civil engineering structures and a successful application of the novel sensor system for measuring ambient vibration of a real building structure. This sensor system integrates the Moire fringe phenomenon with fiber optics to achieve accurate and reliable measurements. The sensor system is immune to electromagnetic (EM) interference making it suitable for difficult applications in such environments involving strong EM fields, electrical spark-induced explosion risks, and cabling problems, prohibiting the use of conventional electromagnetic accelerometers. A prototype sensor system has been developed, together with a signal processing software. The experimental studies demonstrated the high-performance of the fiber optic sensor system. Especially, the sensor was successfully used for monitoring a real building on UCI (University of California Irvine, USA).

Design and Performance Evaluation of the Precision Pressure Control System for the High Vacuum Transport Module (고진공 운송계에서의 정밀 압력제어장치의 설게 및 성능시험)

  • Jang, W.I.;Jang, K.H.;Lee, J.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.7
    • /
    • pp.92-98
    • /
    • 1995
  • In the cluster tool, it is necessary to precisely control the vacuum pressure for the wafer transportation between transport module and cassette or process modules with the range of 1*10$^{-4}$ to 5*10$^{-5}$ torr. So we have designed the pressure control system for the transport module of the cluster tool and have evaluated its performance. Digital PID is utilized with the weighted sum of both three previous errors and one current error. The feedback signal is put into the nitrogen mass flow controller using the transport module controller. This pressure control system can prevent the transport module from the particle generation and backstreaming of hazardous process gases of the process chamber.

  • PDF

Development of an Expert System for Steam Generator Tube Inspection of Nuclear Power Plants (원전설비 결함진단을 위한 전문가시스템 개발)

  • Woo, Hee-Gon;Choe, Seong-Su;Choi, Byung-Jae
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.730-733
    • /
    • 1991
  • The inspection for steam generator tubes of nuclear power plants is performed by eddy current test method. In the current, human experts should check enormous amounts of eddy current(EC) signals to find abnormal ones on the computer screen. This method could cause a few problems. The purpose of this paper is to develop an expert system which can automatically evaluate EC signals of steam generator tubes. Since this expert system can replace or help human experts, the reliability in EC signal evaluation can be improved, and the required man-power can be reduced. Additionally, application of this system can shorten the overhaul period, contribute to a safe operation of the nuclear power plant.

  • PDF

Reliability Evaluation of Reactor Coolant Pump Trip Signal Redundancy (원자로냉각재펌프 정지신호 다중화 변경에 대한 신뢰도평가)

  • Lee, Eun-Chan;Chi, Moon-Goo;Bae, Yeon-Kyoung
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1760-1761
    • /
    • 2011
  • 원자력발전기술원은 발전정지 관련계통 제어케비넷 내에 장착된 제어용 기기들의 다중화 설계변경 활동을 지원하고 관련 기기의 배선상태 등의 육안점검을 통해 취약성 여부를 최종 확인하기 위하여 국내 Westinghouse형 원전 계측제어 케비넷 점검을 수행하였다. 또한 관련 설계변경에 대한 신뢰도평가 기술지원도 함께 수행하여 해당 설계변경이 설비의 신뢰도 향상에 효과가 있는지를 정량적으로 평가하고자 하였다. 이에 따라 원자로냉각재펌프(RCP, Reactor Coolant Pump) 제어 채널의 다중화 개선에 대하여 설계변경 전후의 기기 배열 변화에 따른 계통 신뢰도 변화를 대표유형 기기의 고장률에 근거하여 분석하였다. 고장수목을 이용하여 설계변경 전후의 RCP 고장정지로 인한 발전정지를 유발하는 고장조합을 도출하고, 고장정지 확률 변화를 정량화 하였다. 또한 기기 보호 측면에서 펌프 보호를 위한 신호를 출력하지 못하는 경우를 정량화하여 이를 비교하였다.

  • PDF

Development of Fiber Optic Sensor for Monitoring Magnetic Bearing (자기베어링 모니터링용 광파이버센서 개발에 관한 연구)

  • 홍준희;한복수
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.1
    • /
    • pp.65-71
    • /
    • 2003
  • In a high speed spindle system it is very important to monitor the state of rotating rotor. Particularly in active control spindle system the position sensor must provide feedback to the control system on the exact position of the rotor. In order to monitor the state of a high speed spindle exactly, high accuracy and wide frequency bandwidth of sensors are important. The focus in this paper is to make a fiber optic sensor for monitoring rotor of magnetic bearing, to design the circuit for detecting optical signal, and to evaluation static and dynamic characteristics of fiber optic sensor.

Fabrication and Characteristic Evaluation of a Flexible Tactile Sensor Using PVDF (PVDF를 이용한 유연 촉각센서의 제작과 특성 평가)

  • Yu, Kee-Ho;Yun, Myung-Jong;Kwon, Tae-Gyu;Lee, Seong-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.161-166
    • /
    • 2001
  • The prototype of a tactile sensor with $4\times 4$ taxels using PVDF was fabricated. The electrode patterns of the thin Cu tape are attached to the 28${\mu}{\textrm}{m}$ thickness PVDF using conductive adhesive and covering the sensor using polyester film for insulation. The structure of the sensor is flexible and the fabrication procedure is easy relatively. Also the output characteristics of the sensor was nearly linear with 8% deviation. The signals of a contact pressure to the tactile sensor are sensed and processed through A/D converter, DSP system and personal computer. The reasonable performance for the detection of contact shape and force distribution was verified through the experiment.

  • PDF

Fabrication and Evaluation of Tactile Stimulator Using Stacked PZT (적층형 액추에이터를 이용한 촉각자극기의 제작 및 평가 PZT)

  • 윤명종;권대규;김남균;유기호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.450-453
    • /
    • 2004
  • A tactile stimulator array using stacked PZT is fabricated and evaluated in this paper. The purpose of this research is the development of a tactile stimulator to represent the obstacle information for the visually disabled. As a first step of this research, we investigate the physiological characteristics of tactile stimuli and design a tactile stimulator based on the investigated results. Also we evaluated a fabricated tactile stimulator. The prototype of tactile stimulator which has 2$\times$2 tactor elements with 3mm spacing is fabricated using stacked PZT actuator. In order to evaluate the characteristics of this tactile stimulator, physiological experiments are carried out. In the experiment, the threshold of tactile stimulus intensity within a frequency range of 5-500Hz at various stimulus amplitudes are investigated. According to the obtained experimental result, the input signal of tactile stimulator for the effective transfer of obstacle information is determined. Also physiological experiments of multi-stimuli recognition such as shift and rotation are carried out

  • PDF