• Title/Summary/Keyword: Signal Detection Probability

Search Result 243, Processing Time 0.018 seconds

CR Technology and Activation Plan for White Space Utilization (화이트 스페이스 활용을 위한 무선환경 인지 기술 및 활성화 방안)

  • Yoo, Sung-Jin;Kang, Kyu-Min;Jung, Hoiyoon;Park, SeungKeun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.11
    • /
    • pp.779-789
    • /
    • 2014
  • Cognitive radio (CR) technology based on geo-location database access approach and/or wideband spectrum sensing approach is absolutely vital in order to recognize available frequency bands in white spaces (WSs), and efficiently utilize shared spectrums. This paper presents a new structure for the TVWS database access protocol implementation based on Internet Engineering Task Force (IETF) Protocol to Access WS database (PAWS). A wideband compressive spectrum sensing (WCSS) scheme using a modulated wideband converter is also proposed for the TVWS utilization. The developed database access protocol technology which is adopted in both the TV band device (TVBD) and the TVWS database operates well in the TV frequency bands. The proposed WCSS shows a stable performance in false alarm probability irrespective of noise variance estimation error as well as provides signal detection probabilities greater than 95%. This paper also investigates Federal Communications Commision (FCC) regulatory requirements of TVWS database as well as European Telecommunications Standards Institute (ETSI) policy related to TVWS database. A standardized protocol to achieve interoperability among multiple TVBDs and TVWS databases, which is currently prepared in the IETF, is discussed.

The study on the capacity of synchronous CDMA return link for a Ka band satellite communication system (Ka 대역을 사용하는 동기화 CDMA 위성 시스템 리턴링크의 수용용량에 관한 연구)

  • 황승훈;이용한;박용서;황금찬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.7
    • /
    • pp.1797-1806
    • /
    • 1998
  • Future satellite communication systems will be developed at Ka-band (20/30 GHz) owing to the relatively wide frequency allocation and current freedom from terrestrial interference for multimedia services. A serious disadvantage of the Ka-band, however, is the very high atmospheric attenuation in rainy weather. Synchronous CDMA drastically redces the effect of self-noise with several interesting features of CDMA for mobile communications such as fixible freuqncy rese, the capability of performin soft-handover and a lower sensitivity to interference. This paper evaluates the performance of a synchronous CDMA reture link for a Ka-band geostationary satellite communication system. For a fixed satellite channel whose characteristics depend on weather conditions, the signal envelope and phase for this channel is modelled as Gaussian. The bit error and outage probability, and the detection loss due to imperfect chip timing synchronization is analytically evaluated and the system capacity degaradation due to the weather condition is estimated. The two cases consist of the general case in which all users are affected by rain condition, and the worst case in which the reference user is only affected by rain attenuation. the results for two cases of rain condition clearly show that synchronous CDMA eases the power control requirements and has less sensitivity to imperfect power control.

  • PDF

Effect of Noise on Density Differences of Tissue in Computed Tomography (컴퓨터 단층촬영의 조직간 밀도차이에 대한 노이즈 영향)

  • Yang, Won Seok;Son, Jung Min;Chon, Kwon Su
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.3
    • /
    • pp.403-407
    • /
    • 2018
  • Currently, the highest cancer death rate in Korea is lung cancer, which is a typical cancer that is difficult to detect early. Low-dose chest CT is being used for early detection, which has a greater lung cancer diagnosis rate of about three times than regular chest x-ray images. However, low-dose chest CT not only significantly reduces image resolution but also has a weak signal and is sensitive to noise. Also, air filled lungs are low-density organs and the presence of noise can significantly affect early diagnosis of cancer. This study used Visual C++ to set a circle inside a large circle with a density of 2.0, with a density of 1.0, which is the density of water, in which five small circle of mathematics have different densities. Gaussian noise was generated by 1%, 2%, 3%, and 4% respectively to determine the effect of noise on the mean value, the standard deviation value, and the relative noise ratio(SNR). In areas where the density difference between the large and small circles was greatest in the event of 1 % noise, the SNR in the area with the greatest variation in noise was 4.669, and in areas with the lowest density difference, the SNR was 1.183. In addition, the SNR values can be seen to be high if the same results are obtained for both positive and negative densities. Quality was also clearly visible when the density difference was large, and if the noise level was increased, the SNR was reduced to significantly affect the noise. Low-density organs or organs in areas of similar density to cancers, will have significant noise effects, and the effects of density differences on the probability of noise will affect diagnosis.