• Title/Summary/Keyword: Signal Correlation

Search Result 1,571, Processing Time 0.027 seconds

An Analysis of Correlation between Voice vowels and Human body (음성모음과 신체의 상관관계 분석)

  • Choi, In-Ho;Jeon, Jong-Weon
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.3
    • /
    • pp.375-383
    • /
    • 2010
  • In this paper, the correlation between voice vowels and human body is analysed for the voice therapy and diagnosis. Using vowels('a', 'e', 'i', 'o', 'u'), the vibration signals in head, chest and belly is measured with the voice signal. As the result, it is shown that body characteristics can be checked from some vowels, and the correlation coefficient of body vibration signal and BMI(body mass index) is computed. From the result, using voice signal and body vibrations, the body diagnosis model is proposed.

Fast 360° Sound Source Localization using Signal Energies and Partial Cross Correlation for TDOA Computation

  • Yiwere, Mariam;Rhee, Eun Joo
    • Journal of Information Technology Applications and Management
    • /
    • v.24 no.1
    • /
    • pp.157-167
    • /
    • 2017
  • This paper proposes a simple sound source localization (SSL) method based on signal energies comparison and partial cross correlation for TDOA computation. Many sound source localization methods include multiple TDOA computations in order to eliminate front-back confusion. Multiple TDOA computations however increase the methods' computation times which need to be as minimal as possible for real-time applications. Our aim in this paper is to achieve the same results of localization using fewer computations. Using three microphones, we first compare signal energies to predict which quadrant the sound source is in, and then we use partial cross correlation to estimate the TDOA value before computing the azimuth value. Also, we apply a threshold value to reinforce our prediction method. Our experimental results show that the proposed method has less computation time; spending approximately 30% less time than previous three microphone methods.

A Study on DOA and Delay Time Presumption based on Average Method (평균방법에 근거한 DOA와 지연시간추정에 관한 연구)

  • 이관형;송우영
    • Journal of the Korea Society for Simulation
    • /
    • v.13 no.2
    • /
    • pp.1-12
    • /
    • 2004
  • This paper estimated the arrival angle and electric wave delay time using the space method law and the directions of arrival (DOA) estimation algorithm in case of signal correlation. Space method law is the method used to repress cross correlation before applying the weight value to the receiving signal. The values of the diagonal elements in the correlation matrix were averaged to replace as the diagonal elements value. In the area of wireless communication or mobile communication, there are high correlations in case of low delay time difference in multiple waves. This causes the quality of the communication to drop due to interference with the desired signal elements. This paper estimated the arrival angle and electric wave delay time using the space method law and the MUSIC algorithm. With the arrival angle algorithm, the arrival angle cannot be estimated below 5 in case of signal correlations because the angle resolution capacity decreases accordingly. The super resolution capacity was estimated to determine the arrival angle below 5 in this paper. In addition, the proposed algorithm estimated the short delay time difference to be below 20ns.

  • PDF

Latin Hypercube Sampling Based Probabilistic Small Signal Stability Analysis Considering Load Correlation

  • Zuo, Jian;Li, Yinhong;Cai, Defu;Shi, Dongyuan
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1832-1842
    • /
    • 2014
  • A novel probabilistic small signal stability analysis (PSSSA) method considering load correlation is proposed in this paper. The superiority Latin hypercube sampling (LHS) technique combined with Monte Carlo simulation (MCS) is utilized to investigate the probabilistic small signal stability of power system in presence of load correlation. LHS helps to reduce the sampling size, meanwhile guarantees the accuracy and robustness of the solutions. The correlation coefficient matrix is adopted to represent the correlations between loads. Simulation results of the two-area, four-machine system prove that the proposed method is an efficient and robust sampling method. Simulation results of the 16-machine, 68-bus test system indicate that load correlation has a significant impact on the probabilistic analysis result of the critical oscillation mode under a certain degree of load uncertainty.

Cable Fault Detection Improvement of STDR Using Reference Signal Elimination (인가신호 제거를 이용한 STDR의 케이블 고장 검출 성능 향상)

  • Jeon, Jeong-Chay;Kim, Taek-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.450-456
    • /
    • 2016
  • STDR (sequence time domain reflectometry) to detect a cable fault using a pseudo noise sequence as a reference signal, and time correlation analysis between the reference signal and reflection signal is robust to noisy environments and can detect intermittent faults including open faults and short circuits. On the other hand, if the distance of the fault location is far away or the fault type is a soft fault, attenuation of the reflected signal becomes larger; hence the correlation coefficient in the STDR becomes smaller, which makes fault detection difficult and the measurement error larger. In addition, automation of the fault location by detection of phase and peak value becomes difficult. Therefore, to improve the cable fault detection of a conventional STDR, this paper proposes the algorithm in that the peak value of the correlation coefficient of the reference signal is detected, and a peak value of the correlation coefficient of the reflected signal is then detected after removing the reference signal. The performance of the proposed method was validated experimentally in low-voltage power cables. The performance evaluation showed that the proposed method can identify whether a fault occurred more accurately and can track the fault locations better than conventional STDR despite the signal attenuation. In addition, there was no error of an automatic fault type and its location by the detection of the phase and peak value through the elimination of the reference signal and normalization of the correlation coefficient.

Efficient Signal Feature Detection method using Spectral Correlation Function in the Fading channel

  • Song, Chang-Kun;Kim, Kyung-Seok
    • International Journal of Contents
    • /
    • v.3 no.2
    • /
    • pp.35-39
    • /
    • 2007
  • The cognitive radio communication is taking the attentions because the development of the technique came to be possible to analyze wireless signals. In the IEEE 802.22 WRAN Systems[1], how to detect a spectrum and signals is continuously studied. In this paper, we propose the efficient signal detection method using SCF (Spectral Correlation Function). It is easy to detect the signal feature when we are using the SCF. Because most modulated signals have the cyclo-stationarity which is unique for each signal. But the fading channel effected serious influence even though it detects the feature of the signal. We applied LMS(Least Mean Square) filter for the compensation of the signal which is effected the serious influence in the fading channel. And we analyze some signal patterns through the SCF. And we show the unique signal feature of each signal through the SCF method. It is robust for low SNR(Signal to Noise Ratio) environment and we can distinguish it in the fading channel using LMS Filter.

Radar Signal Generation Technique using Ambiguity Function (모호함수를 이용한 레이더 신호 생성기법)

  • 홍동희;박성철;이성용;김정렬;박진규
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.80-88
    • /
    • 2003
  • Radar signal simulation is increasingly gaining in importance according as modem radar systems are more complex. Although computer performance has been advanced, it is difficult to implement the real-time simulation because the detailed model for the radar is necessary to get the desired accuracy. In order to achieve real time operation, we propose radar signal generation technique using ambiguity function, Instead of wellknown correlation method. The ambiguity function is the mathematical modeling of the signal processing procedure which is a simulation section to require the most computations.

Correlation Measurement of Process Dynamic Characteristics by Pseudo-Random Binary Singnals (상관관계법에 의한 제어계통의 동 특성연구 ( 1 )-의 불규칙 2진신호에 의한 푸로쎄스의 동특성 상관측정)

  • 한만춘;최경삼;박장춘
    • 전기의세계
    • /
    • v.19 no.6
    • /
    • pp.1-7
    • /
    • 1970
  • In this paper, to determine process dynamic characteristics, the correlation method for measuring the impulse response of process using a pseudo-random binary signal as the test signal instead of white noise was studied. The error caused by using the signal of Mesquence signal generator which was built up by the authors was analysed. Experments were performed on the 1st and 2nd order lag systems and the results were in good coincidence with theoretical values. It is expected that applying these results, it may be possible to develop a continuous measuring method adaptable to modern control systems.

  • PDF

IMPROVEMENT OF CROSS-CORRELATION TECHNIQUE FOR LEAK DETECTION OF A BURIED PIPE IN A TONAL NOISY ENVIRONMENT

  • Yoon, Doo-Byung;Park, Jin-Ho;Shin, Sung-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.44 no.8
    • /
    • pp.977-984
    • /
    • 2012
  • The cross-correlation technique has been widely used for leakage detection of buried pipes, and this technique can be successfully applied when the leakage signal has a high signal-to-noise ratio. In the case of a power plant, the measured leakage signals obtained from the sensors may contain background noise and mechanical noise generated by adjacent machinery. In such a case, the conventional method using the cross-correlation function may fail to estimate the leakage point. In order to enhance the leakage estimation capability of a buried pipe in a noisy environment, an improved cross-correlation technique is proposed. It uses a noise rejection technique in the frequency domain to effectively eliminate the tonal noise due to rotating machinery. Experiments were carried out to verify the validity of the proposed method. The results show that even in a tonal noisy environment, the proposed method can provide more reliable means for estimating the time delay of the leakage signals.

Multipath Mitigation Method Through Asymmetry Estimation of Correlation Function (상관함수의 비대칭성 추정을 통한 다중 경로 오차 제거 기법)

  • Jang Han-Jin;Moon Sung-Wook;Kim Jeong-Won;Lee Sang-Jeong;Hwang Dong-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.10
    • /
    • pp.1050-1055
    • /
    • 2006
  • Since the muiltipath signal arrives at the GPS receiver later than the line-of-sight signal, the multipath signal makes the shape of the correlation function asymmetric. This paper proposes a multipath mitigation method through asymmetry estimation of the correlation function, in which multiple correlators are utilized. The asymmetry is estimated from correlation values of correlators which have different chip spacings. Based on the estimated asymmetry, the correlation function is modified in order to get a better code tracking performance. Even through the proposed method uses multiple correlators including the narrow correlator, the acquisition performance is not degraded since the number of search cell of the narrow correlator part can be reduced in the algorithm of the proposed method. The simulation results show that the proposed method gives better performance than the generic correlator in multipath environment.