• Title/Summary/Keyword: Side weir

Search Result 69, Processing Time 0.024 seconds

Increase of Spillway Discharge by Labyrinth Weir (래버린스위어에 의한 여수로 배제유량 증대)

  • Seo, Il Won;Song, Chang Geun;Park, Se Hoon;Kim, Dong Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1B
    • /
    • pp.11-20
    • /
    • 2008
  • The spillway type of small and midsize dams in Korea is almost overflow weir. To examine flood control capacity of overflow spillway, FLOW-3D was applied to Daesuho dam and analysis was focused on the discharge of dam spillway by changing weir shape. Overflow phases and discharges of linear labyrinth weir and curved labyrinth weir were compared with those of existing linear ogee weir. Hydraulic model experiment was performed to verify numerical result. Verification results showed that overflow behaviors and flow characteristics in the side channel by hydraulic model experiment and numerical simulation are well matched, and water surface elevation at side wall coincides with each other. When the reservoir elevation was increased up to design flood level, in case of the linear ogee weir the flow over the crest ran through smoothly in the side channel, whereas in cases of linear labyrinth weir and curved labyrinth weirs, the flow discharge was increased by 40 cms, and the flow over the weir crest, rotating counter-clockwise, was submerged in the side channel. The results of the water level-discharge curve revealed that labyrinth weir can increase discharge by 71% compared to the discharge of linear ogee weir at low reservoir elevation since it can have longer effective length. But as water surface elevation rises, the slope of water level-discharge curve of labyrinth weir becomes milder by submergence and nappe interference in the side channel.

The Hydraulic Assessment of Side Weir using 3D Computational Fluid Dynamics Program (3차원 수치모형에 의한 횡월류위어의 수리학적 평가)

  • Nam, Ki-Young;Han, Kun-Yeun;Park, Hong-Sung;Kim, Keuk-Soo;Choi, Seung-Yong
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.2
    • /
    • pp.153-168
    • /
    • 2010
  • The objectives of this study are to analyze flow characteristics for a side weir, which is an inlet structure for flow discharge reduction in the main channel through 3 dimensional numerical analysis and to understand the efficiency of the overflow effect at the side weir. In this study over 40 simulations using FLOW-3D, a computational fluid dynamics program were conducted, and the results were analyzed to find the influence of the flow hydraulics, geometry, channel and weir shapes on the coefficient. It is especially considered the relatively high stage in downstream that may cause flow within channel to be backed up along the channel. Additionally by setting up the scale of simulations much larger than the existing test equipment designed by other researchers, it is intended to analyze more accurate hydraulic behavior along with the realistic hydraulic features such as structures and volumes of flow. The results show that for design with subcritical flow only if the Froude number of upstream is sustained below 0.5 and the length of weir is 33-100% of the width of channel, it is expected to improve the efficiency of the overflow over a side weir.

The Effectiveness of Overflow Improvement of Broad-Crested Side Weirs according to Installing a Hydraulic Structure (보 설치에 따른 광정횡월류위어의 월류량 개선 효과)

  • Kang, Ho Seon;Cho, Hong Je
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.7
    • /
    • pp.523-533
    • /
    • 2015
  • In this study, the effectiveness of overflow improvement of weir was tested by conducting hydraulic experiments at the designated spot for installment of side weir under the condition of installment of hydraulic structures such as small reservoir in mainstream. The height of the reservoir was set up as a third of that of the weir, accordingly the rate of the height of the weir and the distance of the reservoir from the weir($B_h/L_b$) were 0.05, 0.025, 0.0167 each. As a result, overflows per unit width increased by 8.1%, 5.4% and 3.9% perspectively. A new discharge coefficient that adds $B_h/L_b$ as parameter to the existing discharge coefficient of trapezoidal broad crested side weir was suggested and the application of the new formula of discharge coefficient by comparing measured overflow with calculated overflow was identified.

2D Numerical Simulations for Shallow-water Flows over a Side Weir (측면 위어를 넘나드는 천수 흐름에 대한 2차원 수치모의)

  • Hwang, Seung-Yong
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.11
    • /
    • pp.957-967
    • /
    • 2015
  • It was reviewed for the 2D numerical simulations to evaluate the effects of flood control by detention basin, even if stage-discharge relationships for the side weir were not known. A 2D depth-integrated numerical model was constructed by the application of the finite volume method to the shallow water equations as a numerical method and the introduction of an approximate Riemann solver for the accurate calculation of fluxes. Results by the model were compared with those by the laboratory test for the cases of free overflow and submerged flow over a side weir between the channel and storage. The difference between simulated and measured discharge coefficients for the case of free overflow is very small. In addition, the results by simulations were in good agreement with those by experiments for the submerged flow over a side weir and its mechanism was reproduced well. Through this study the discharge coefficients of side weirs can be accurately determined by the 2D numerical model and a considerable degree of accuracy can be achieved to evaluate the effect of flood defenses by detention basins. Thus, it will be expected to apply this model practically to the plan of detention basins, the evaluation of design alternatives, or the management of the existing ones.

Estimation of discharge coefficients of the broad-crested side weir with various levee's side slope of main channel (본류수로의 제방사면경사에 따른 광정횡월류위어의 유량계수 산정)

  • Kang, Ho-Seon;Cho, Hong-Je
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.11
    • /
    • pp.941-949
    • /
    • 2016
  • The flow characteristics of the broad-crested side weir considering the levee's side slope of main channel ($ES_{ch}$) was investigated through hydraulic experiment in order to estimate the discharge coefficient equation. For applicability to actual river, levee's side slope of main channel 1:0.5, 1:1 and 1:2 were selected. Experimental results show that the new estimated equation for the discharge coefficient including $ES_{ch}$ is reasonable and effective in actual applications by comparing estimated and measured discharge over side weirs. Through a multiple linear regression analysis the importance of variabes were ordered as $ES_{ch}$ > $h/y_u$ > $L/y_u$ > $Fr_u$. Especially the discharge coefficient equation without $Fr_u$ was suggested, and the high applicability was reviewed by comparing the measured and calculated overflow of broad-chested side weir.

Discharge Coefficient of Triangular Side Weir (삼각형 횡월류위어의 유량계수)

  • Park Sung Sik;Seo Geun Soon;Kim Young Ho;Song Jai Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1016-1020
    • /
    • 2005
  • 횡월류위어(side weir 또는 lateral weir)는 인공수로 또는 자연하천에서 흐름방향에 평행하게 수로측면에 설치되어 에너지 소산, 수위의 안정, 일정 유량의 취수 및 분배, 초과 홍수량 전환 등의 목적으로 이용되는 수공구조물로서 댐의 여수로, off-line 저류지, 관개배수를 위한 수로. 하수도 설비 등에서 폭넓게 사용되고 있다. 지금까지의 국내외 연구는 대부분 직사각형 횡월류위어에 제한되어 수행되었으며, 삼각형 횡월류위어의 흐름특성 및 유량계수 산정에 관한 연구는 거의 없는 실정이다. 본 연구에서는 수리실험을 통하여 본류의 흐름조건과 삼각형 횡월류위어각 등을 변화시켜 유량계수를 산정$\cdot$분석하였다. 수리실험은 길이 20m, 폭 0.8m, 높이 0.9m이고 벽면이 아크릴로 된 직사각형 가변 경사 개수로 실험장치를 이용하였다. 삼각형 횡월류위어는 예연이고 위어각은 90, 120, $150^{\circ}$였으며, 본류 Froude 수는 0.45-0.56였다. 삼각형 횡월류위어의 월류량에 큰 영향을 미치는 변수인 Froude 수와 위어각 등을 고려한 유량계수 산정식을 제시하였으며, Kumar와 Pathak(1987)의 공식과 비교 분석하였다.

  • PDF

An Estimation of Discharge Coefficient Considering the Geometrical Shape of Broad Crested Side Weir (광정횡월류위어의 기하학적 형상을 고려한 유량계수 산정)

  • Cho, Hong-Je;Kang, Ho-Seon
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.12
    • /
    • pp.955-965
    • /
    • 2011
  • The flow characteristics of rectangular and 1 : 1 and 1 : 2 trapezoidal weirs were investigated through hydraulic experiments in order calculate the exact overflow discharge of the broad-crested side weir. The flow was found to be most stable in trapezoidal shapes with the lowest incline. The 1 : 1 and 1 : 2 trapezoidal weirs had 5.67% and 8.57% increases, respectively, compared to the rectangular weir in terms of overflow amount, which suggests that they are more effective in preventing flood. An integrated discharge coefficient equation taking into account the discharge coefficient equation and shapes was proposed through a multiple linear regression analysis with an addition of a new parameter for the side wear, $L/L_H$, to the conventional discharge coefficient equation. Also, the applicability of the newly proposed discharge coefficient equation was reviewed by comparing the measured and calculated overflow amounts based on the experimental data of preceding researches and existing researchers and the research data of this study.

The Effect of for Major River Project and Kumho River on Nakdong River's Water Quality - Focused on Kangjung-Koryung Weir (4대강 사업과 금호강의 수질이 낙동강 본류에 미치는 영향에 대한 연구 - 강정고령보 공사현장을 중심으로)

  • Hwang, Sam-Jin;Bae, Hun-Kyun;Kim, Hak-Yoon
    • Journal of Environmental Science International
    • /
    • v.22 no.6
    • /
    • pp.695-703
    • /
    • 2013
  • In this study, the effects of four major river project and Kumho River, second biggest branch of Nakdong River, were investigated to provide basic data for proper management of Nakdong River's water quality. Daily sampling processes at three different points, Munsanri (the upper side of Kangjung-Koryung weir), Kangchang (the outlet of the Kumho River) and Samunjin (the lower side of Kangjung-Koryung weir and junction of Kumho River and Nakdong River), were conducted from May 1st 2011 to Sep. 4th 2011. Water samples were analyzed for nine factors, DO, BOD, COD, T-N, T-P, pH, turbidity, SS, and coliform. As demonstrated by the results, concentrations of BOD, T-N, T-P and coliform at Nakdong River were affected by water quality of Kumho River while SS and turbidity were affected by constructions for Kangjung-Koryung weir. Further studies, for example, affects of wastewater treatment facilities, should be followed.

Numerical analysis of shallow-water flow over the square-edged broad-crested weir (직각 광정 위어를 지나는 천수 흐름의 수치 해석)

  • Hwang, Seung-Yong
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.10
    • /
    • pp.811-821
    • /
    • 2022
  • Accuracy of a numerical model with the Hwang's scheme of directly analyzing discontinuous topography could be enhanced by introducing a flux correction coefficient that accounted for the deviation of actual pressure from hydrostatic distribution acting on the front of discontinuous topography. The optimal coefficient was determined from 218 experimental runs for square-edged broad-crested weir and simulation with it showed good agreement with another two square-edged broad-crested weir experiments and an unsteady side-weir experiment. This enabled accurate numerical simulation of shallow-water flow over the discontinuous river structure, such as square-edged broad-crested weir, without alleviating discontinuous topography with refined meshes or imposing internal boundary conditions.

A Study on Reconstruction Models of Side-channel Spillway for Discharge Capacity Improvement (측수로형 여수로의 홍수배제능력증대를 위한 월류부 개축방안에 관한 연구)

  • Park, Sae-Hoon;Moon, Young-Il
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.3
    • /
    • pp.9-18
    • /
    • 2007
  • The small and medium sized dams have the fill dam type of a lot of occasions, which are often weak in cases of major floods. For this reason, although a countermeasure is in great need, due to the importance of the facilities and financial situations, no direct safety measures have been taken. In this study, in order to minimize construction expenditure for practical safety measures in cases of major floods, the overflow section of spillway has been analyzed focusing on how the overflow capacity will increase in the case of partially rebuilding a part of the overflow section of spillway favorable for hydraulic conditions. The labyrinth weir and movable weir was chosen for reconstruction models of the overflow section. Moreover, for analyzing the after-effects of the reconstruction, a small scale dam was temporarily chosen for various experiments such as the hydraulic model testing and the three dimension numerical evaluation through the use of Flow-3D.