• Title/Summary/Keyword: Side walking

Search Result 221, Processing Time 0.026 seconds

The Effects of Using Cane on Hemiplegic Gait of Strock Patients (뇌졸증으로 인한 편마비 보행의 시간적 공간적 요소 분석: 지팡이가 보행에 미치는 영향)

  • Lee hyun-ok;Kim byung-jo
    • The Journal of Korean Physical Therapy
    • /
    • v.15 no.4
    • /
    • pp.372-383
    • /
    • 2003
  • The purpose of this study was to assess of cane use on the hemiplegic gait of strock patients in temporal and spatial variables. Subjects were thirteen including 8 men and 5 women. They could walk independently without cane, To compare the effect of walking with and without a cane, temporal and spatial variables was measured using GAITRite. Cane walking demonstrated increased stance time on the affected side, and swing time, step length on the sound side were increased, and base of support was decreased. In conclusion, hemiplegic gait pattern of strock patients were improved with cane than those not using a cane.

  • PDF

Effect of Trans cranial Directed Current Stimulus on Temporal and Spatial Walking Capacity for Hemiparalysis Patients (경 두개 직류자극이 뇌졸중 환자의 시간적, 공간적 보행능력에 미치는 영향)

  • Lee, Yeon Seop;Jun, Hun Ju
    • Journal of Korean Physical Therapy Science
    • /
    • v.29 no.3
    • /
    • pp.75-84
    • /
    • 2022
  • Background: This study was to investigate the effect of non-invasive transcranial direct current stimulation due to hemiplegic patients due to stroke on temporal and spatial gait ability. Design: Randomized sham controlled trial. Methods: For the study method, 42 patients with hemiplegia due to stroke were randomly assigned to 14 patients each, and the general walking group, tDCS walking group, and tDCS (sham) walking group were subjected to 5 times a week, 30 minutes a day, and 6 weeks. In the temporal gait variables of hemiplegic patients due to stroke, the effect of the gait time, gait cycle, single support, double support, swing phase, stance phase, gait speed, cadence were measured. In spatial variables, one step length and one step length were measured. Results: As a result of the study, the EG group significantly increased in the step time, gait velocity, and cadence of the paralysis side in the comparison of temporal walking variables between groups according to the application of tDCS of walking ability in hemiplegic patients due to stroke patients(p<.05). In the change in spatial walking variables between groups according to the application of tDCS, the step length and stride length of the EG group showed a significant increase. Both the comparison of temporal and spatial symmetry walking variables between groups according to tDCS application was not significant(p>.05) Conclusion: As a result, tDCS has an effective effect on the improvement of the gait ability of stroke patients. In particular, it is an effective method of physical therapy that can improve the cadence and speed of gait, which can be combined with the existing gait training to effectively increase the gait of hemiplegia due to stroke patients.

Effects of Balance Training on Different Support Surface on Balance and Gait in Patients with Chronic Stroke

  • Kong, Hae-na;Bang, Dae-hyouk;Shin, Won-seob
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.10 no.3
    • /
    • pp.57-65
    • /
    • 2015
  • PURPOSE: The purpose of this study was to investigate the effect of balance training on different support surface (affected and non-affected sides) on the balance and gait function of chronic stroke patients. METHODS: The patients were randomly assigned to 1 of 4 groups. Group 1 received balance training on the stable surface, group 2 received balance training on the unstable surface, group 3 received balance training on different support surface (affected side: stable surface, non-affected side: unstable surface), and group 4 received balance training on different support surface (affected side: unstable, non-affected side: stable). Twelve sessions (30 min/d, 3 times/wk for 4 wk) were applied. There were assessed before and after the intervention with Balancia, functional reach test (FRT), lateral reach test (LRT), timed up-and-go (TUG), and 10-meter walking test (10MWT). RESULTS: After the training, all of the groups improved significantly than before training in Balancia, FRT, LRT, TUG, and 10MWT. There were significantly variable in sway distance, FRT, LRT, TUG, and 10MWT among the 4 groups. Post hoc analysis revealed that the group 3 had significantly higher results than other 3 groups in sway distance, and FRT, LRT, TUG, and 10MWT. CONCLUSION: Balance training on different support surface (affected side: stable surface, non-affected side: unstable surface) could facilitate a stronger beneficial effect on balance and walking ability than other balance trainings on different support surface in patients with stroke.

The Influence of Auditory-Feedback Device Using Wearable Air-Pressure Insole on Spatiotemporal Gait Symmetry in Chronic Hemplegia

  • Heo, Ji-Hun;Song, Changho;Jung, Sangwoo
    • Physical Therapy Rehabilitation Science
    • /
    • v.10 no.3
    • /
    • pp.311-319
    • /
    • 2021
  • Objective: To investigate the effect of emphasized initial contact by using a wearable air-pressure insole to provide auditory-feedback with variations of maximum peak pressure (MPP) of the affected side on spatiotemporal gait parameters and gait symmetry of stroke patients Design: A cross-sectional study Methods: Eighteen stroke patients participated in this study. All subjects walked five trials using an air-pressure insole that provides auditory feedback with different thresholds set on the insole. First, subjects walked without any auditory feedback. Then, the MPP threshold on the affected side was set from 70% and increase threshold by 10% after each trial until 100%. They walked three times or more on the gait analyzer for each trial, and the average values were measured. Before starting the experiment, subjects measured body weight, initial gait abilities and affected side MPP without auditory feedback. Results: Temporal and spatial variables were significantly increased in trials with auditory feedback from air-pressure insole except for non-paralyzed single support time and spatial gait symmetry compared to trials without auditory feedback(p<0.05). Among the four different thresholds, the walking speed, unaffected side single support time, affected and unaffected side stride, and affected side step length were greatest at 80% threshold of maximum peak, while affected single support time, temporal gait symmetry, and unaffected step length were greatest at the maximum peak of 100% threshold. Conclusions: These results indicate that auditory feedback gait using air-pressure insoles can be an effective way to improve walking speed, single support time, step length, stride, and temporal gait symmetry in stroke patients.

Dual task interference while walking in chronic stroke survivors

  • Shin, Joon-Ho;Choi, Hyun;Lee, Jung Ah;Eun, Seon-deok;Koo, Dohoon;Kim, JaeHo;Lee, Sol;Cho, KiHun
    • Physical Therapy Rehabilitation Science
    • /
    • v.6 no.3
    • /
    • pp.134-139
    • /
    • 2017
  • Objective: Dual-task interference is defined as decrements in performance observed when people attempt to perform two tasks concurrently, such as a verbal task and walking. The purpose of this study was to investigate the changes of gait ability according to the dual task interference in chronic stroke survivors. Design: Cross-sectional study. Methods: Ten chronic stroke survivors (9 male, 1 female; mean age, 55.30 years; mini mental state examination, 19.60; onset duration, 56.90 months) recruited from the local community participated in this study. Gait ability (velocity, paretic side step, and stride time and length) under the single- and dual-task conditions at a self-selected comfortable walking speed was measured using the motion analysis system. In the dual task conditions, subjects performed three types of cognitive tasks (controlled oral word association test, auditory clock test, and counting backwards) while walking on the track. Results: For velocity, step and stride length, there was a significant decrease in the dual-task walking condition compared to the single walking condition (p<0.05). In particular, higher reduction of walking ability was observed when applying the counting backward task. Conclusions: Our results revealed that the addition of cognitive tasks while walking may lead to decrements of gait ability in stroke survivors. In particular, the difficulty level was the highest for the calculating task. We believe that these results provide basic information for improvements in gait ability and may be useful in gait training to prevent falls after a stroke incident.

A study on improvement of walking safety in newtown schoolzone way (신도시 교육환경개선에 관한 연구 -통학로의 안전성 확보를 중심으로-)

  • Yoon, Yong-Gi
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.10 no.1
    • /
    • pp.53-63
    • /
    • 2011
  • The purpose of this study is to suggest a scheme to provide children safer and more comfortable walking circumstances by survey current walking circumstances of schoolzone ways. A scheme suggested in this study was based on the analysis of survey to elementary school in 3 Newtowns(Dongtan, Dongbaek and Gumdan City) and actually surveyed data on school zone, the scheme can be summed up as follows; First, to avoid pedestrian roads being interrupted and to expend waiting space near schoolzone ways, several measures are needed including fixing roads and building additional gateway. Second, pedestrian crossings in front of school gate should be located at least 30m away from the left side of the gate. Third, to secure pedestrians' safety in school zone ways should be planed and established more security concepts und facilities.

A Study on Kinematic Analysis of Trunk and Lower Extremities in Stance Phase of Walking according to Turning Direction (보행 방향 전환 시 입각기 하지 및 체간의 운동형상학적 분석)

  • Oh, Tae-Young
    • The Journal of Korean Physical Therapy
    • /
    • v.25 no.2
    • /
    • pp.88-95
    • /
    • 2013
  • Purpose: The purpose of this study was to conduct an analysis of kinematics of lower extremities and trunk in stance phase of walking according to turning direction. Methods: Ten university students (five male, five female) who were in their 20s (mean age was 20.6 years old) participated in this study. Participants did not have participants did not have any problem with skeletal muscular system. We used the "Qualisys motion capture system" for analysis of trunk and lower extremity movement in stance phase of walking according to turning direction. We collected data while subjects walked a distance of 10 m, and at the 6 m line, subjects were required to turn to the left side and the right leg was positioned in stance phase and the left leg was positioned in swing. For data analysis, the SPSS for Windows ver. 20.0 statistics program was used in performance of one way analysis of variance according to turning direction. Results: Significant difference of trunk and lower extremities was observed for turning direction according to walking cycle (p<0.05). Upper trunk movement showed a greater increase at three dimensions than lower trunk, and in heel off phase, pelvic movement showed a greater increase than lower trunk (p<0.05). In 45 degree and 90 degrees of turning direction, all movements of trunk and lower extremities were significantly different among three events of stance phase (p<0.05). Conclusion: We suggest that three-dimensional movement analysis of trunk and lower extremities during turning movement was very important in order to indicate increasing balance or walking ability for people with impaired movement or walking.

The Effects of Underwater Treadmill Walking Training with Aquatic Cuff Weights on Balance and Walking Abilities in Stroke Patients (수중 발목 커프 착용 후 수중 트레드밀 보행 훈련이 뇌졸중 환자의 균형과 보행 능력에 미치는 영향)

  • Yoon, Eui-Seob;Choi, Jong-Duk
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.13 no.1
    • /
    • pp.89-98
    • /
    • 2018
  • PURPOSE: While underwater, patients with hemiplegia experience unwanted limb flotation on their paretic side due to low muscle mass and high body fat. However, only a limited number of studies support the effectiveness of this practice. Therefore, the purpose of this study was to determine how the balance and walking abilities of patients with hemiplegia due to stroke were affected by wearing an aquatic cuff on their ankles during underwater treadmill walking. METHODS: Twenty stroke patients were divided into an experimental group comprised of 20 patients who would wear an aquatic cuff and a control group comprised of 10 patients without an aquatic cuff. Both groups underwent a six-week intervention for 30 minutes a day three times a week. To evaluate the groups' balance and walking abilities before and after the intervention, the 10 m walking test, timed up go test, Berg Balance Scale, functional reaching test, and the GAITRite system were used. RESULTS: The results of the 10 m walking test, timed up go test, differences between the left and right gait cycles, and functional reaching test showed statistically significant differences in the rates of change between the two groups (p<.05). CONCLUSION: The study results suggest that underwater treadmill training in stroke patients can be more effective when they wear an aquatic cuff on their ankles compared to wearing no aquatic cuff.

The Effect of Gaze Angle on Muscle Activity and Kinematic Variables during Treadmill Walking

  • Kim, Bo-Suk;Jung, Jae-Hu;Chae, Woen-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.1
    • /
    • pp.35-43
    • /
    • 2017
  • Objective: The purpose of this study was to determine how gaze angle affects muscle activity and kinematic variables during treadmill walking and to offer scientific information for effective and safe treadmill training environment. Method: Ten male subjects who have no musculoskeletal disorder were recruited. Eight pairs of surface electrodes were attached to the right side of the body to monitor the upper trapezius (UT), rectus abdominis (RA), erector spinae (ES), rectus femoris (RF), bicep femoris (BF), tibialis anterior (TA), medialis gastrocnemius (MG), and lateral gastrocnemius (LG). Two digital camcorders were used to obtain 3-D kinematics of the lower extremity. Each subject walked on a treadmill with a TV monitor at three different heights (eye level; EL, 20% above eye level; AE, 20% below eye level; BE) at speed of 5.0 km/h. For each trial being analyzed, five critical instants and four phases were identified from the video recording. For each dependent variable, one-way ANOVA with repeated measures was used to determine whether there were significant differences among three different conditions (p<.05). When a significant difference was found, post hoc analyses were performed using the contrast procedure. Results: This study found that average and peak IEMG values for EL were generally smaller than the corresponding values for AE and BE but the differences were not statically significant. There were also no significant changes in kinematic variables among three different gaze angles. Conclusion: Based on the results of this study, gaze angle does not affect muscle activity and kinematic variables during treadmill walking. However, it is interesting to note that walking with BE may increase the muscle activity of the trapezius and the lower extremity. Moreover, it may hinder proper dorsiflexion during landing phase. Thus, it seems to reasonable to suggest that inappropriate gaze angle should be avoided in treadmill walking. It is obvious that increased walking speed may cause a significant changes in biomechanical parameters used in this study. It is recommended that future studies be conducted which are similar to the present investigation but using different walking speed.

Effect of Uneven Surface Gait Training on Ankle Muscle Activation and Balance in Stroke Patients

  • Ji, Young-Ho;Lee, Jae-Kwang;Lee, Jong-Kyung
    • The Journal of Korean Physical Therapy
    • /
    • v.34 no.4
    • /
    • pp.161-167
    • /
    • 2022
  • Purpose: The purpose of this study was to investigate the effects of regular training on the uneven surface that stroke patients encounter in their daily life on their ankle joint muscle activity and balance ability. They were divided into two groups: the gait training group on uneven surfaces and the gait training group on normal surfaces. Methods: In this study, 30 patients diagnosed with stroke and undergoing rehabilitation were selected. 15 people in the uneven surface gait training group and 15 people in the flat gait training group were selected. The muscle activation of the ankle muscles was measured when walking again on a even surface after walking on an uneven surface and on a flat ground. After each gait training, the limit of stability and Romberg test were performed to evaluate the balance ability. Results: As a result of the experimental results before and after walking by group, the tibialis anterior muscle activity of the paralyzed side was significantly decreased in the uneven surface walking group. As a result of measuring balance ability after training, the limit of stability in all directions was significantly increased in the uneven surface gait training group, and the area and length moved significantly decreased in the uneven surface gait training group in the Romberg test as well (p<0.05). Conclusion: After walking on uneven surface, it was confirmed that the muscle activity of the ankle joint decreased in normal flat walking, and thus the efficiency of muscle activity was increased. In addition, it was possible to confirm the improvement of the balance ability of the gait training on the uneven surface, and in conclusion, it could be confirmed that it had an effect on the improvement of the walking ability.