• Title/Summary/Keyword: Side condition

Search Result 1,841, Processing Time 0.031 seconds

A Case Study on the Vibration by Fluid Induced Instability at Large Steam Turbine-generator (대형 터빈-발전기에서의 유체 불안정진동 해소사례)

  • Han, Seung-Woo;Roh, Cheol-Woo;Yoo, Mu-Sang;Kim, In-Chul;Joo, In-Gouk;Kim, Myong-Shik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.2
    • /
    • pp.238-246
    • /
    • 2008
  • This case study refers to turbine-generator with retrofitted turbine rotor. Vibration problem occurring after the retrofit was mainly due to high vibration from exciter side. However, repeated test run and operation during scheduled maintenance caused high vibration from generator bearing, and post-overhaul test run before turbine vibration correction caused oil whip on the bearing. This case study shows how to analyze vibration condition of high turbine generator vibration detected during the post-overhaul test run and vibration condition of offline and online data to reflect it on establishing maintenance schedule and overhaul correction procedure. Vibration data could be acquired during steady load operation or even with varying speed and load. Each data is important for machinery condition evaluation. This case study shows that the vibration data during extreme condition is the key factor in analysis, which helps to find the machinery problem.

Discharge Coeficient Analysis according to Flow Condition for Radial Gate Type (Radial Gate 형식의 배수갑문 흐름조건별 유량계수 검토)

  • Park, Yeong-Wook;Hwang, Bo-Yeon;Song, Hyun-Gu
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.306-312
    • /
    • 2005
  • Gates for the purpose of drainage are classified following the types of structure as: Radial Gate, Sluice Gate, Rolling Gate, Drum Gate. In many cases of the reclamation project the sluice type of gates are applied. Different from this general trend, however the radial type of gate was adopted in the Saemangeum project. In this case the discharge coefficients which are used for the sluice type of gate was applied. To estimate the correct amount of discharge which will be evacuated through the gates, therefore the proper discharge coefficients should be estimated before the operation of the gates. The discharge coefficients were estimated through the physical hydraulic modeling, and we got the results as: $0.72{\sim}0.84$ for the submerged condition on the both sides of upstream and downstream, $0.62{\sim}0.83$ for the free surface condition on the downtream side only, and $1.04{\sim}1.12$ for the free surface condition on the both sides of upstream and downstream. The discharge coefficients obtained from the experiments are greater than those of the sluice gates in the design criteria. From the results of the study we may expect that in the Saemangeum project the radial gates could evacuate larger amount of discharge than the originally designed discharge, so that we may sure that the Saemangeum gates have enough capability to control the evacuation of water not only in the usual period but also in the flooding season.

  • PDF

Numerical investigation of yaw angle effects on propulsive characteristics of podded propulsors

  • Shamsi, Reza;Ghassemi, Hassan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.2
    • /
    • pp.287-301
    • /
    • 2013
  • The present paper deals with the problems of yaw angle effects on podded propulsor performance. The study aims at providing insights on characteristics of podded propulsors in azimuthing condition. In this regard, a wide numerical simulation that concerned yaw angle effect measurement on podded propeller performance was performed. The Reynolds-Averaged Navier Stokes (RANS) based solver is used in order to study the variations of hydrodynamic characteristics of podded propulsor at various angles. At first, the propeller is analyzed in open water condition in absence of pod and strut. Next flow around pod and strut are simulated without effect of propellers. Finally, the whole unit is studied in zero yaw angle and azimuthing condition. Structured and unstructured mesh techniques are used for single propeller and podded propulsor. The performance curves of the propeller obtained by numerical method are compared and verified by the experimental results. The characteristic parameters including the torque and thrust of the propeller, the axial force and side force of unit are presented as function of velocity advance ratio and yaw angle. The results shows that the propeller thrust, torque and podded unit forces in azimuthing condition depend on velocity advance ratio and yaw angle.

Electro-optical Characteristics of LED Flat Light Source in Low Temperature Condition (LED 평판조명의 저온환경에서의 전기광학특성)

  • Han, Jeong-Min;Seo, Dae-Shik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.1
    • /
    • pp.61-65
    • /
    • 2011
  • Recently, LCD (liquid crystal display) industry is needed to goods of high reliability and wide range temperature condition and it is interested in products for extremely cold condition without failure of light-up. In this experiment, we made the LED backlight unit for Automotive-navigation under the extremely cold condition. And for making this backlight unit, we used to eight side emitting type white LEDs with 3W high power LED. We could know that this backlight unit releases to 18,000 nit in 24W power consumption and start up voltage time is under the 1ms in the ambient temperature at -40.

Sources of the High-Latitude Thermospheric Neutral Mass Density Variations

  • Kwak, Young-Sil;Richmond, Arthur;Deng, Yue;Ahn, Byung-Ho;Cho, Kyung-Suk
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.4
    • /
    • pp.329-335
    • /
    • 2010
  • We investigate the sources of the variation of the high-latitude thermospheric neutral mass density depending on the interplanetary magnetic field (IMF) conditions. For this purpose, we have carried out the National Center for Atmospheric Research Thermosphere-Ionosphere Electrodynamics General Circulation Model (NCAR-TIEGCM) simulations for various IMF conditions under summer condition in the southern hemisphere. The NCAR-TIEGCM is combined with a new empirical model that provides a forcing to the thermosphere in high latitudes. The difference of the high-latitude thermospheric neutral mass density (subtraction of the values for zero IMF condition from the values for non-zero IMF conditions) shows a dependence on the IMF condition: For negative $B_y$ condition, there are significantly enhanced difference densities in the dusk sector and around midnight. Under the positive-$B_y$ condition, there is a decrease in the early morning hours including the dawn side poleward of $-70^{\circ}$. For negative $B_z$, the difference of the thermospheric densities shows a strong enhancement in the cusp region and around midnight, but decreases in the dawn sector. In the dusk sector, those values are relatively larger than those in the dawn sector. The density difference under positive-$B_z$ condition shows decreases generally. The density difference is more significant under negative-$B_z$ condition than under positive-$B_z$ condition. The dependence of the density difference on the IMF conditions in high latitudes, especially, in the dawn and dusk sectors can be explained by the effect of thermospheric winds that are associated with the ionospheric convection and vary following the direction of the IMF. In auroral and cusp regions, heating of thermosphere by ionospheric currents and/or auroral particle precipitation can be also the source of the dependence of the density difference on the IMF conditions.

Effects of Preparatory Movements on Performance of Sideward Responsive Propulsion Movement (사전동작이 좌우 반응 추진운동의 수행력에 미치는 영향)

  • Kim, Yong-Woon;Yoon, Te-Jin;Seo, Jung-Suk
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.3
    • /
    • pp.9-19
    • /
    • 2005
  • The purpose of this study was to analyze the effects of three different types of preparatory movement(squat, countermovement and hopping) in sideward responsive propulsion movement. 7 healthy subjects performed left and right side movement task by external output signal. 3D kinematics were analyzed The results were followed First, performance time in the countermovement and hopping conditions was shorter(10-20%) than that in the squat condition. The hopping condition that is more related to pre-stretch showed excellent performance. Second, time difference between after turned on the external signal and until take off was the primary factor in performance results among movement conditions. The preparatory phase before the propulsive phase in the squat condition produced more time than that in other conditions. The hopping condition showed the most short time in both the preparatory and the propulsive phase, therefore it was advantage for performance result Third, significant difference was not found in take-off velocity among movement conditions although there was difference of the time required in the propulsive phase. The maximum acceleration in the propulsive phase was larger in order of the hopping. countermovement, and squat condition. The countermovement and hopping conditions showed high take-off velocity although the propulsive phase in those conditions was shorter than that in squat condition. The pre-stretch by preparatory countermovement was considered as the positive factor of producing power in concentric contraction. Fourth, the hopping condition produced large angular velocity of joints. In hopping condition, large amount of moment for rotation movement was revealed in relatively short time and it was considered to cause powerful joint movements. In conclusion, the hopping movement using countermovement is advantage of responsive propulsion movement. It is resulted from short duration until take off and large amount of joint moment and joint power in concentric contraction by pre-stretch.

A Study on Dynamic Analyses of Cut and Cover Tunnel during Earthquakes (개착터널에 대한 지진 시 동적수치해석에 관한 연구)

  • Park, Sung-Sik;Moon, Hong-Duk;Park, Si-Hyun
    • The Journal of Engineering Geology
    • /
    • v.25 no.2
    • /
    • pp.237-250
    • /
    • 2015
  • Underground structures such as a tunnel have been considered as safer than structures on the ground during earthquake. However, severe damages of underground structures occurred at subway tunnel during 1995 Kobe Earthquake and such damages are gradually increased. In this study, a dynamic behavior of a cut and cover tunnel surrounded by weathered soils is investigated using Mohr-Coulomb Model. Parametric study was carried out for boundary conditions, tensile strength, and earthquake magnitudes. The results of numerical analyses in terms of ground deformations and stresses acting on the lining were quite dependent on the side boundary condition (free or fix conditions) and tensile strength of surrounding soils. The ground was deformed upward at the end of earthquake when the side boundary condition was fixed, whereas residual deformations were not predicted when it was free. When the tensile strength of a soil was set to the same as its cohesion, residual deformation was less than 1cm, regardless of side boundary conditions or input accelerations. In addition to that, stress conditions at the maximum deformation and end of earthquake were within an allowable range and considered as safe. Proper boundary conditions and material properties such as tensile strength are quite important because they may significantly impact on the results of dynamic analyses.

Influence of Endorser's Gaze Direction on Consumer's Visual Attention, Attitude and Recognition: Focused on the Eye Movement (광고 모델의 위치와 시선 방향이소비자의 시각적 주의, 태도 및재인에 미치는 효과: 안구운동추적기법을 중심으로)

  • Chung, Hyenyeong;Lee, Ji-Yeon;Nam, Yun-Ju
    • (The) Korean Journal of Advertising
    • /
    • v.29 no.7
    • /
    • pp.29-53
    • /
    • 2018
  • In our study, we investigated the effects of position of endorser and endorser's gaze direction(direct/averted_image/averted_text) on advertising attitude, purchase intent and brand recognition using eye-tracking method. Focusing on the printed cosmetic ads which the role of endorser is important and indirect persuade route is relatively is emphasized, we conducted experiment on 36 participants in 20s. As prior studies, our results shows that participants paid attention to more and faster on specific element which the endorser is gazing at. But it was not reflected to ad attitude and purchase intent directly. When the endorser is positioned in left the side, the highest purchase intent was shown in direct gaze condition, while when the endorser is on the right side, the highest ad attitude was shown in gazing image condition. Additionally, the brand recognition task following eye-tracking experiment shows that recognition accuracy was higher only in condition which the endorser is in the left side looking at the product image. These results demonstrated that the gaze direction of endorser plays a role as attentional guidance, which means it can lead customer's attention to particular region in the printed ad, but the effect can be varied depending on the position of endorser and which type of information the endorser is gazing at. Therefore, ultimately, to increase customer's ad attitude and purchase intent, complex consideration of not only the gazing direction of the endorser, but the position of endorser and other diverse elements is necessary.

Effect of Carbon Couch Side Rail and Vac-lok In case of Lung RPO irradiation (Lung RPO 선량전달시, Carbon Couch Side Rail과 Vac-lok이 미치는 영향)

  • Kim, Seok Min;Gwak, Geun Tak;Lee, Seung Hun;Kim, Jung Soo;Kwon, Hyoung Cheol;Kim, Yang Su;Lee, Sun Young
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.27-34
    • /
    • 2018
  • Purpose : To evaluate the effect of carbon couch side rail and vacuum immobilization device in case of lung RPO irradiation. Materials and Methods : The 10, 20, 30 mm thickness of vac-lok's right side were obtained. To measure of doses, glass dosimeters were used and measured reference point is left lung center at the phantom. A, B, C, and D points are left, right, down, and up directions based on the center point. In the state of Side-Rail-Out, place the without vac-lok, with the thickness of 10, 20, and 30 mm vac-lok. After the glass dosimeters was inserted in center, A, B, C, and D points, 100 MU of 6 MV X-ray were irradiated to the referenced center point in the condition of $10{\times}10cm^2$ field size, SAD 100 cm, gantry angle 225, 300 MU/min dose rate. Five measurements were made for each point. In the state of Side-Rail-In, five measurement were made for each point under the same conditions. The average is measured on each of the five Side-Rail-Out and Side-Rail-In measurements. Results : In the presence of side rail, the dose reduction ratio was -11.8 %, -12.3 %, -4.1 %, -12.3 %, -7.3 % for each A, B, C, and D points. In the state of Side-Rail-Out, the dose reduction ratio for the using 10 mm thickness of vac-lok was -0.9 % than without vac-lok. The dose reduction ratio for the using 20 mm thickness of vac-lok was -2.0 %, for the using 30 mm thickness of the vac-lok was -3.0 % than without vac-lok. In the state of Side-Rail-In, the dose reduction ratio for the using 10 mm thickness of vac-lok was -1.0 % than without vac-lok. The dose reduction ratio for the using 20 mm vac-lok was -2.1 %, for the using 30 mm vac-lok was -3.0 % than without vac-lok. Based on the value of no vac-lok dose in the Side-Rail-In state, The dose reduction ratios for the using 10 mm, 20 mm and 30 mm thickness of vac-loks In the Side-Rail-Out that the center point were -12.7 %, -13.7 %, -14.2 % and -12.8 %, -13.8 %, -14.5 % respectively at point A. The dose reduction ratios for the same conditions to the B point were -4.9 %, -6.1 %, -7.1 % and -13.4 %, -14.4 %, -15.5 % respectively at point C. The dose reduction ratios for the same conditions to the D point were -8.4 %, -9.0 %, -10.4 % respectively. Conclusion : The attenuation was caused by presence of side rails and thickness of vac-lok. Pay attention to these attenuation factors, making it a more effective radiation therapy.

  • PDF

An Effect on Fisheries Resources Enhancement of Hollow Jumbo Structure and a Search for Artificial Reefs by Side Scan Sonar in the Western Sea of Korea (서해연안 잠보형 인공어초 어장에서의 수산자원 조성효과와 사이드스캔 소너에 의한 인공어초 상태조사)

  • 박해훈;신종근;김재오;박승윤;김호상;임동현;박영철;조성환;홍승현
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.3
    • /
    • pp.230-238
    • /
    • 2003
  • An effect on the enhancing production of hollow 'jumbo' structures and the condition of artificial reefs (dice and hollow jumbo structure) by side scan sonar were described. The experiment of the capture of fish in the jumbo structures and control site (non-artificial site) by trammel net and traps was done twice every year from 1998 to 2000. The relative catches by trammel net between in the jumbo structure and in the control site was significantly different in number and in weight at 5% level and also that by traps significantly different in weight. The t-test of the catch of finespotted flounder showed that the hollow jumbo structure was regarded as a breeding field because the average size of the flounder in the jumbo site was smaller than that in the control site. The search on the condition of the artificial reefs (dice and hollow jumbo structure) was performed by side scanning sonar which showed various phase of it such as accumulated, dispersed, scouring and partly buried. The result implied that in the area of sand bottom with strong tide like the western sea of Korea, the current criterion for constructing artificial reef should be modified because of the sand moving on the bottom.