• Title/Summary/Keyword: Siberian High Index

Search Result 6, Processing Time 0.016 seconds

The Spatial Distribution and Change of Frequency of the Yellow Sand Days in Korea (한국의 황사 발생 빈도 분포와 변화 분석)

  • Kim, Sunyoung;Lee, Seungho
    • Journal of Environmental Impact Assessment
    • /
    • v.15 no.3
    • /
    • pp.207-215
    • /
    • 2006
  • The purpose of this paper is to analyze the spatial distribution and change of the frequency of Yellow Sand days and to examine their relationship with atmospheric circular characteristics at the surroundings of the Korean peninsula. Yellow Sand days data are used by intensity, Siberian High Index and monthly mean temperature of the Northern Hemisphere. In the Middle-western region, the occurrence frequency of Yellow Sand days was higher during the study period (1973-2004). Also, the occurrence frequency of Yellow Sand days increased to latter half 16 years compared with the first half 16 years, and be clearer in Middlewest regions. Yellow Sand days frequency increased, and the trend was distinct in the Jungbu region during the study period. Increasing trend of Yellow Sand days frequency was significant for the recent 22 years. Yellow Sand days had a negative relationship with Siberian High Index in February and March. Therefore, Siberian High Index became weaker in the spring, and possibility for the occurrence of Yellow Sand days was generating larger. Yellow Sand days had a positive relationship in monthly mean temperature of the Northern Hemisphere. Especially, the case of the strong Yellow Sand days is significant. Recently, global warming might be affecting the occurrence of strong Yellow Sand days.

Application of Statistical and Machine Learning Techniques for Habitat Potential Mapping of Siberian Roe Deer in South Korea

  • Lee, Saro;Rezaie, Fatemeh
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.2 no.1
    • /
    • pp.1-14
    • /
    • 2021
  • The study has been carried out with an objective to prepare Siberian roe deer habitat potential maps in South Korea based on three geographic information system-based models including frequency ratio (FR) as a bivariate statistical approach as well as convolutional neural network (CNN) and long short-term memory (LSTM) as machine learning algorithms. According to field observations, 741 locations were reported as roe deer's habitat preferences. The dataset were divided with a proportion of 70:30 for constructing models and validation purposes. Through FR model, a total of 10 influential factors were opted for the modelling process, namely altitude, valley depth, slope height, topographic position index (TPI), topographic wetness index (TWI), normalized difference water index, drainage density, road density, radar intensity, and morphological feature. The results of variable importance analysis determined that TPI, TWI, altitude and valley depth have higher impact on predicting. Furthermore, the area under the receiver operating characteristic (ROC) curve was applied to assess the prediction accuracies of three models. The results showed that all the models almost have similar performances, but LSTM model had relatively higher prediction ability in comparison to FR and CNN models with the accuracy of 76% and 73% during the training and validation process. The obtained map of LSTM model was categorized into five classes of potentiality including very low, low, moderate, high and very high with proportions of 19.70%, 19.81%, 19.31%, 19.86%, and 21.31%, respectively. The resultant potential maps may be valuable to monitor and preserve the Siberian roe deer habitats.

Relationship between Winter Water Temperature in the Eastern Part of the Yellow Sea and Siberian High Pressure and Arctic Oscillation

  • Jung, Hae Kun;Lee, Chung Il
    • Journal of Environmental Science International
    • /
    • v.21 no.12
    • /
    • pp.1425-1433
    • /
    • 2012
  • Water temperature in the eastern part of the Yellow Sea (EYS) during winter (JFM) and summer (JJA) from 1964 to 2009 and Siberian High Pressure Index (SHI) and Arctic Oscillation index (AOI) during winter (JFM) from 1950 to 2011 were used to analyze long-term variation in oceanic and atmospheric conditions and relationship between winter and summer bottom water temperature. Winter water temperature at 0, 30 and 50 m had fluctuated highly till the late of 1980s, but after this it was relatively stable. The long-term trends in winter water temperature at both depths were separated with cold regime and warm regime on the basis of the late 1980s. Winter water temperature at 0m and 50m during warm regime increased about $0.9^{\circ}C$ and $1.1^{\circ}C$ respectively compared to that during cold regime. Fluctuation pattern in winter water temperature matched well with SHI and AOI The SHI had negative correlation with water temperature at 0 m (r=-0.51) and 50 m (r=-0.58). On the other hand, the AO had positive correlation with Winter water temperature at 0 m (r=0.34) and 50 m (r=0.45). Cyclic fluctuation pattern of winter water temperature had a relation with SHI and AO, in particular two to six-year periodicity were dominant from the early of the 1970s to the early of the 1980s. Before the late of 1980s, change pattern in winter water temperature at 0 and 50 m was similar with that in the bottom water temperature during summer, but after this, relationship between two variables was low.

Changes in the Spawning Ground Environment of the Common Squid, Todarodes pacificus due to Climate Change (기후변화에 따른 살오징어(Todarodes pacificus) 산란장 환경 변화)

  • Kim, Yoon-ha;Jung, Hae Kun;Lee, Chung Il
    • Ocean and Polar Research
    • /
    • v.40 no.3
    • /
    • pp.127-143
    • /
    • 2018
  • This study analyzed the influence of climate change on the spawning ground area of the common squid, Todarodes pacificus. To estimate long term changes in the area of the spawning ground of the common squid, water temperature at 50 m deep that can be inferred from sea surface temperature (SST) based on both NOAA/AVHRR (1981.07-2002.12) and MODIS/AQUA (2003.01-2009.12) ocean color data was analyzed. In addition, five climate indices, Arctic Oscillation Index (AO), Siberian High Index (SH), Aleutian Low Pressure Index (ALP), East Asia Winter Monsoon Index (EAWM) and Pacific Decadal Oscillation (PDO) which are the main indicators of climate changes in the northwestern Pacific were used to study the relationship between the magnitude of the estimated spawning ground and climate indices. The area of the estimated spawning ground was highly correlated with the total catch of common squid throughout four decades. The area of the estimated spawning ground was negatively correlated with SH and EAWM. Especially, PDO was negatively correlated with the area of the spawning ground in the northwestern Pacific (r = -0.39) and in the southern part of the East Sea (r = -0.38). There was a positive relationship between the AO and the area of the spawning ground in the northwestern Pacific (r = 0.46) as well as in the southern part of the East Sea (r = 0.32). Temporally, the area of the winter spawning ground in the southern part of the East Sea in the 1980s was smaller than those areas in the 1990s and 2000s, because the area was disconnected with the western coastal spawning ground of Japan in the 1980s, while the area had been made wider and more continuous from the Korea strait to the western coastal water of Honshu in the 1990s and 2000s.

Synoptic Climatological Characteristics of Distribution of Precipitation in Korea in Early Autumn (한국의 초가을 강수분포의 종관기후학적 특성)

  • Yang, Jin-Suk
    • Journal of the Korean association of regional geographers
    • /
    • v.5 no.1
    • /
    • pp.151-162
    • /
    • 1999
  • This study is a comparative analysis of sea level and 500hPa surfaces between dry year and wet year, which are selected by variability of precipitation and standardized anomalies in Korea in early autumn. While the amount of precipitation of early autumn decreases, the variability of precipitation increases rapidly reflecting the strength and weakness of Kaul Changma front and the occurrences of the typhoonic precipitation. The regional distribution of the variability of precipitation shows west-high, east-low pattern in which the east coast and the southeastern coast shows low, but high in the southwestern coast. In the anomalies distribution of sea-level and 500hPa surfaces, during dry year, the northern part of Siberia and the core area of North Pacific high shows negative anomalies, on the contrary, there were positive anomalies in wet year at the same areas. In addition, at the 500hPa level, while the Korean peninsula was located at the west of deep trough with low zonal index in dry year, the peninsula was influenced by weak trough with high zonal index showing strong zonal flow in wet year. During dry year the height of 500hPa surface is low at the north of $40^{\circ}N$, but high in wet year. In consequences, this study identified that the occurrences of dry year and wet year were influenced by the seasonal variations of the strength and the weakness of North Pacific high and Siberian high.

  • PDF

Seasonal and Inter-annual Variations of Sea Ice Distribution in the Arctic Using AMSR-E Data: July 2002 to May 2009 (AMSR-E 위성 데이터를 이용한 북극해빙분포의 계절 변동 및 연 변동 조사: 2002년 7월 ~ 2009년 5월)

  • Yang, Chan-Su;Na, Jae-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.5
    • /
    • pp.423-434
    • /
    • 2009
  • The Arctic environment is sensitive to change of sea-ice distribution. The increase and decrease of sea ice work to an index of globe warming progress. In order to predict the progress of hereafter earth global warming, continuous monitoring regarding a change of the sea ice area in the Arctic should be performed. The remote sensing based on an artificial satellite is most effective on the North Pole. The sea ice observation using a passive microwave sensor has been continued from 1970's. The determination of sea ice extent and ice type is one of the great successes of the passive microwave imagers. In this paper, to investigate the seasonal and inter-annual variation of sea-ice distribution we used here the sea ice data from July 2002 to May 2009 around the Arctic within $60^{\circ}N$ for the AMSR-E 12.5km sea-ice concentration, a passive microwave sensor. From an early analysis of these data, the arctic sea-ice extent has been steadily decreasing at a rate of about 3.1%, accounting for about $2{\times}10^5\;km^2$, which was calculated for the sea-ice cover reaching its minimum extent at the end of each summer. It is also revealed that this trend corresponds to a decline in the multi-year ice that is affected mainly by summer sea surface and air temperature increases. The extent of younger and thinner (first-year) ice decreased to the 2007 minimum, but rapidly recovered in 2008 and 2009 due to the dramatic loss in 2007. Seasonal variations of the sea-ice extent show significant year-to-year variation in the seasons of January-March in the Barents and Labrador seas and August-October in the region from the East Siberian and Chukchi seas to the North Pole. The spatial distribution of multi-year ice (7-year old) indicates that the perennial ice fraction has rapidly shrunk recently out of the East Siberian, Laptev, and Kara seas to the high region of the Arctic within the last seven years and the Northeast Passage could become open year-round in near future.