• 제목/요약/키워드: Siamese Neural Network

검색결과 24건 처리시간 0.023초

Small Sample Face Recognition Algorithm Based on Novel Siamese Network

  • Zhang, Jianming;Jin, Xiaokang;Liu, Yukai;Sangaiah, Arun Kumar;Wang, Jin
    • Journal of Information Processing Systems
    • /
    • 제14권6호
    • /
    • pp.1464-1479
    • /
    • 2018
  • In face recognition, sometimes the number of available training samples for single category is insufficient. Therefore, the performances of models trained by convolutional neural network are not ideal. The small sample face recognition algorithm based on novel Siamese network is proposed in this paper, which doesn't need rich samples for training. The algorithm designs and realizes a new Siamese network model, SiameseFacel, which uses pairs of face images as inputs and maps them to target space so that the $L_2$ norm distance in target space can represent the semantic distance in input space. The mapping is represented by the neural network in supervised learning. Moreover, a more lightweight Siamese network model, SiameseFace2, is designed to reduce the network parameters without losing accuracy. We also present a new method to generate training data and expand the number of training samples for single category in AR and labeled faces in the wild (LFW) datasets, which improves the recognition accuracy of the models. Four loss functions are adopted to carry out experiments on AR and LFW datasets. The results show that the contrastive loss function combined with new Siamese network model in this paper can effectively improve the accuracy of face recognition.

Object Tracking with Histogram weighted Centroid augmented Siamese Region Proposal Network

  • Budiman, Sutanto Edward;Lee, Sukho
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제13권2호
    • /
    • pp.156-165
    • /
    • 2021
  • In this paper, we propose an histogram weighted centroid based Siamese region proposal network for object tracking. The original Siamese region proposal network uses two identical artificial neural networks which take two different images as the inputs and decide whether the same object exist in both input images based on a similarity measure. However, as the Siamese network is pre-trained offline, it experiences many difficulties in the adaptation to various online environments. Therefore, in this paper we propose to incorporate the histogram weighted centroid feature into the Siamese network method to enhance the accuracy of the object tracking. The proposed method uses both the histogram information and the weighted centroid location of the top 10 color regions to decide which of the proposed region should become the next predicted object region.

Siamese Network의 특징맵을 이용한 객체 추적 알고리즘 (Object Tracking Algorithm using Feature Map based on Siamese Network)

  • 임수창;박성욱;김종찬;류창수
    • 한국멀티미디어학회논문지
    • /
    • 제24권6호
    • /
    • pp.796-804
    • /
    • 2021
  • In computer vision, visual tracking method addresses the problem of localizing an specific object in video sequence according to the bounding box. In this paper, we propose a tracking method by introducing the feature correlation comparison into the siamese network to increase its matching identification. We propose a way to compute location of object to improve matching performance by a correlation operation, which locates parts for solving the searching problem. The higher layer in the network can extract a lot of object information. The lower layer has many location information. To reduce error rate of the object center point, we built a siamese network that extracts the distribution and location information of target objects. As a result of the experiment, the average center error rate was less than 25%.

샴 네트워크 기반 객체 추적을 위한 표적 이미지 교환 모델 (Target Image Exchange Model for Object Tracking Based on Siamese Network)

  • 박성준;김규민;황승준;백중환
    • 한국정보통신학회논문지
    • /
    • 제25권3호
    • /
    • pp.389-395
    • /
    • 2021
  • 본 논문에서는 샴 네트워크 기반의 객체 추적 알고리즘의 성능 향상을 위한 표적 이미지 교환 모델을 제안한다. 샴 네트워크 기반의 객체 추적 알고리즘은 시퀀스의 첫 프레임에서 지정된 표적 이미지만을 사용하여 탐색 이미지 내에서 가장 유사한 부분을 찾아 객체를 추적한다. 첫 프레임의 객체와 유사도를 비교하기 때문에 추적에 한 번 실패하게 되면 오류가 축적되어 추적 객체가 아닌 부분에서 표류하게 되는 현상이 발생한다. 따라서 CNN(Convolutional Neural Network)기반의 모델을 설계하여 추적이 잘 진행되고 있는지 확인하고 샴 네트워크 기반의 객체 추적 알고리즘에서 출력되는 점수를 이용하여 표적 이미지 교환 시기를 정의하였다. 제안 모델은 VOT-2018 데이터 셋을 이용하여 성능을 평가하였고 최종적으로 정확도 0.611 견고도 22.816을 달성하였다.

지역 중첩 신뢰도가 적용된 샴 네트워크 기반 객체 추적 알고리즘 (Object Tracking Algorithm based on Siamese Network with Local Overlap Confidence)

  • 임수창;김종찬
    • 한국전자통신학회논문지
    • /
    • 제18권6호
    • /
    • pp.1109-1116
    • /
    • 2023
  • 객체 추적은 영상의 첫 번째 프레임에서 annotation으로 제공되는 좌표 정보를 활용하여 비디오 시퀀스의 목표 추적에 활용된다. 본 논문에서는 객체 추적 정확도 향상을 위해 심층 특징과 영역 추론 모듈을 결합한 추적 알고리즘을 제안한다. 충분한 객체 정보를 획득하기 위해 Convolution Neural Network를 Siamese Network 구조로 네트워크를 설계하였다. 객체의 영역 추론을 위해 지역 제안 네트워크와 중첩 신뢰도 모듈을 적용하여 추적에 활용하였다. 제안한 추적 알고리즘은 Object Tracking Benchmark 데이터셋을 사용하여 성능검증을 수행하였고, Success 지표에서 69.1%, Precision 지표에서 89.3%를 달성하였다.

Siamese 네트워크 기반 영상 객체 추적 기술 동향 (Trends on Visual Object Tracking Using Siamese Network)

  • 오지용;이지은
    • 전자통신동향분석
    • /
    • 제37권1호
    • /
    • pp.73-83
    • /
    • 2022
  • Visual object tracking can be utilized in various applications and has attracted considerable attention in the field of computer vision. Visual object tracking technology is classified in various ways based on the number of tracking objects and the methodologies employed for tracking algorithms. This report briefly introduces the visual object tracking challenge that contributes to the development of single object tracking technology. Furthermore, we review ten Siamese network-based algorithms that have attracted attention, owing to their high tracking speed (despite the use of neural networks). In addition, we discuss the prospects of the Siamese network-based object tracking algorithms.

Few-Shot Learning을 사용한 호스트 기반 침입 탐지 모델 (Host-Based Intrusion Detection Model Using Few-Shot Learning)

  • 박대경;신동일;신동규;김상수
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권7호
    • /
    • pp.271-278
    • /
    • 2021
  • 현재 사이버 공격이 더욱 지능화됨에 따라 기존의 침입 탐지 시스템(Intrusion Detection System)은 저장된 패턴에서 벗어난 지능형 공격을 탐지하기 어렵다. 이를 해결하려는 방법으로, 데이터 학습을 통해 지능형 공격의 패턴을 분석하는 딥러닝(Deep Learning) 기반의 침입 탐지 시스템 모델이 등장했다. 침입 탐지 시스템은 설치 위치에 따라 호스트 기반과 네트워크 기반으로 구분된다. 호스트 기반 침입 탐지 시스템은 네트워크 기반 침입 탐지 시스템과 달리 시스템 내부와 외부를 전체적으로 관찰해야 하는 단점이 있다. 하지만 네트워크 기반 침입 탐지 시스템에서 탐지할 수 없는 침입을 탐지할 수 있는 장점이 있다. 따라서, 본 연구에서는 호스트 기반의 침입 탐지 시스템에 관한 연구를 수행했다. 호스트 기반의 침입 탐지 시스템 모델의 성능을 평가하고 개선하기 위해서 2018년에 공개된 호스트 기반 LID-DS(Leipzig Intrusion Detection-Data Set)를 사용했다. 해당 데이터 세트를 통한 모델의 성능 평가에 있어서 각 데이터에 대한 유사성을 확인하여 정상 데이터인지 비정상 데이터인지 식별하기 위해 1차원 벡터 데이터를 3차원 이미지 데이터로 변환하여 재구성했다. 또한, 딥러닝 모델은 새로운 사이버 공격 방법이 발견될 때마다 학습을 다시 해야 한다는 단점이 있다. 즉, 데이터의 양이 많을수록 학습하는 시간이 오래 걸리기 때문에 효율적이지 못하다. 이를 해결하기 위해 본 논문에서는 적은 양의 데이터를 학습하여 우수한 성능을 보이는 Few-Shot Learning 기법을 사용하기 위해 Siamese-CNN(Siamese Convolutional Neural Network)을 제안한다. Siamese-CNN은 이미지로 변환한 각 사이버 공격의 샘플에 대한 유사성 점수에 의해 같은 유형의 공격인지 아닌지 판단한다. 정확성은 Few-Shot Learning 기법을 사용하여 정확성을 계산했으며, Siamese-CNN의 성능을 확인하기 위해 Vanilla-CNN(Vanilla Convolutional Neural Network)과 Siamese-CNN의 성능을 비교했다. Accuracy, Precision, Recall 및 F1-Score 지표를 측정한 결과, Vanilla-CNN 모델보다 본 연구에서 제안한 Siamese-CNN 모델의 Recall이 약 6% 증가한 것을 확인했다.

funcGNN과 Siamese Network의 코드 유사성 분석 성능비교 (Comparison of Code Similarity Analysis Performance of funcGNN and Siamese Network)

  • 최동빈;조인수;박용범
    • 반도체디스플레이기술학회지
    • /
    • 제20권3호
    • /
    • pp.113-116
    • /
    • 2021
  • As artificial intelligence technologies, including deep learning, develop, these technologies are being introduced to code similarity analysis. In the traditional analysis method of calculating the graph edit distance (GED) after converting the source code into a control flow graph (CFG), there are studies that calculate the GED through a trained graph neural network (GNN) with the converted CFG, Methods for analyzing code similarity through CNN by imaging CFG are also being studied. In this paper, to determine which approach will be effective and efficient in researching code similarity analysis methods using artificial intelligence in the future, code similarity is measured through funcGNN, which measures code similarity using GNN, and Siamese Network, which is an image similarity analysis model. The accuracy was compared and analyzed. As a result of the analysis, the error rate (0.0458) of the Siamese network was bigger than that of the funcGNN (0.0362).

Human Gait Recognition Based on Spatio-Temporal Deep Convolutional Neural Network for Identification

  • Zhang, Ning;Park, Jin-ho;Lee, Eung-Joo
    • 한국멀티미디어학회논문지
    • /
    • 제23권8호
    • /
    • pp.927-939
    • /
    • 2020
  • Gait recognition can identify people's identity from a long distance, which is very important for improving the intelligence of the monitoring system. Among many human features, gait features have the advantages of being remotely available, robust, and secure. Traditional gait feature extraction, affected by the development of behavior recognition, can only rely on manual feature extraction, which cannot meet the needs of fine gait recognition. The emergence of deep convolutional neural networks has made researchers get rid of complex feature design engineering, and can automatically learn available features through data, which has been widely used. In this paper,conduct feature metric learning in the three-dimensional space by combining the three-dimensional convolution features of the gait sequence and the Siamese structure. This method can capture the information of spatial dimension and time dimension from the continuous periodic gait sequence, and further improve the accuracy and practicability of gait recognition.

제품 결함 탐지에서 데이터 부족 문제를 극복하기 위한 샴 신경망의 활용 (Siamese Neural Networks to Overcome the Insufficient Data Problems in Product Defect Detection)

  • 신강현;진교홍
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.108-111
    • /
    • 2022
  • 제품의 결함 탐지를 위한 머신 비전 시스템에 딥러닝을 적용하기 위해서는 다양한 결함 사례에 대한 방대한 학습 데이터가 필요하다. 하지만 실제 제조 산업에서는 결함의 종류에 따른 데이터 불균형이 생기기 때문에 결함 사례를 일반화할 수 있을 만큼의 제품 이미지를 수집하기 위해서는 많은 시간이 소요된다. 본 논문에서는 적은 데이터로도 학습이 가능한 샴 신경망을 제품 결함 탐지에 적용하고, 제품 결함 이미지 데이터의 속성을 고려하여 이미지 쌍 구성법과 대조 손실 함수를 수정하였다. AUC-ROC로 샴 신경망의 임베딩 성능을 간접적으로 확인한 결과, 같은 제품끼리만 쌍을 구성하고 결함이 있는 제품 간에는 쌍을 구성하였을 때, 그리고 지수 대조 손실로 학습하였을 때 좋은 임베딩 성능을 보였다.

  • PDF