• Title/Summary/Keyword: Siamese Network

Search Result 33, Processing Time 0.037 seconds

Similarity Analysis Between SAR Target Images Based on Siamese Network (Siamese 네트워크 기반 SAR 표적영상 간 유사도 분석)

  • Park, Ji-Hoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.462-475
    • /
    • 2022
  • Different from the field of electro-optical(EO) image analysis, there has been less interest in similarity metrics between synthetic aperture radar(SAR) target images. A reliable and objective similarity analysis for SAR target images is expected to enable the verification of the SAR measurement process or provide the guidelines of target CAD modeling that can be used for simulating realistic SAR target images. For this purpose, this paper presents a similarity analysis method based on the siamese network that quantifies the subjective assessment through the distance learning of similar and dissimilar SAR target image pairs. The proposed method is applied to MSTAR SAR target images of slightly different depression angles and the resultant metrics are compared and analyzed with qualitative evaluation. Since the image similarity is somewhat related to recognition performance, the capacity of the proposed method for target recognition is further checked experimentally with the confusion matrix.

Change Attention based Dense Siamese Network for Remote Sensing Change Detection (원격 탐사 변화 탐지를 위한 변화 주목 기반의 덴스 샴 네트워크)

  • Hwang, Gisu;Lee, Woo-Ju;Oh, Seoung-Jun
    • Journal of Broadcast Engineering
    • /
    • v.26 no.1
    • /
    • pp.14-25
    • /
    • 2021
  • Change detection, which finds changes in remote sensing images of the same location captured at different times, is very important because it is used in various applications. However, registration errors, building displacement errors, and shadow errors cause false positives. To solve these problems, we propose a novle deep convolutional network called CADNet (Change Attention Dense Siamese Network). CADNet uses FPN (Feature Pyramid Network) to detect multi-scale changes, applies a Change Attention Module that attends to the changes, and uses DenseNet as a feature extractor to use feature maps that contain both low-level and high-level features for change detection. CADNet performance measured from the Precision, Recall, F1 side is 98.44%, 98.47%, 98.46% for WHU datasets and 90.72%, 91.89%, 91.30% for LEVIR-CD datasets. The results of this experiment show that CADNet can offer better performance than any other traditional change detection method.

Cascade Network Based Bolt Inspection In High-Speed Train

  • Gu, Xiaodong;Ding, Ji
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3608-3626
    • /
    • 2021
  • The detection of bolts is an important task in high-speed train inspection systems, and it is frequently performed to ensure the safety of trains. The difficulty of the vision-based bolt inspection system lies in small sample defect detection, which makes the end-to-end network ineffective. In this paper, the problem is resolved in two stages, which includes the detection network and cascaded classification networks. For small bolt detection, all bolts including defective bolts and normal bolts are put together for conducting annotation training, a new loss function and a new boundingbox selection based on the smallest axis-aligned convex set are proposed. These allow YOLOv3 network to obtain the accurate position and bounding box of the various bolts. The average precision has been greatly improved on PASCAL VOC, MS COCO and actual data set. After that, the Siamese network is employed for estimating the status of the bolts. Using the convolutional Siamese network, we are able to get strong results on few-shot classification. Extensive experiments and comparisons on actual data set show that the system outperforms state-of-the-art algorithms in bolt inspection.

Cloth Product Recognition based on Siamese Network with Body Region Extraction method

  • Budiman, Sutanto Edward;Kurniawan, Edwin;Lee, Seung Heon;Lee, Jae Seung;Lee, Suk-Ho
    • International journal of advanced smart convergence
    • /
    • v.11 no.2
    • /
    • pp.128-134
    • /
    • 2022
  • Nowadays, people consume a lot of content such as web dramas or K-pop videos through mobile devices such as smartphones, and the market for indirect advertisements through these web dramas or K-pop videos is also increasing every year. In order to lead to the immediate purchase of indirect products in web dramas, a system that allows consumers to purchase immediately at the time the products appear in the drama is needed. In this paper, we propose a system to allow viewers to purchase products worn by celebrities immediately when viewers see and click on them. When a user clicks on a video, it recognizes the product worn by the celebrity, and displays information on the screen on the most similar product corresponding to the recognized product, allowing them to go to the seller's site where they can purchase it. In order for such a system to operate stably, a pose estimation and siamese network-based system is proposed. The proposed system will primarily be released as a streaming service in the form of an app or web page that connects the products in web dramas or other K-pop video contents screened on the mobile with e-commerce. Furthermore, in the future, the technology is expected to be used globally in various industries such as smart mobility and display kiosks.

Multi-level Cross-attention Siamese Network For Visual Object Tracking

  • Zhang, Jianwei;Wang, Jingchao;Zhang, Huanlong;Miao, Mengen;Cai, Zengyu;Chen, Fuguo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.12
    • /
    • pp.3976-3990
    • /
    • 2022
  • Currently, cross-attention is widely used in Siamese trackers to replace traditional correlation operations for feature fusion between template and search region. The former can establish a similar relationship between the target and the search region better than the latter for robust visual object tracking. But existing trackers using cross-attention only focus on rich semantic information of high-level features, while ignoring the appearance information contained in low-level features, which makes trackers vulnerable to interference from similar objects. In this paper, we propose a Multi-level Cross-attention Siamese network(MCSiam) to aggregate the semantic information and appearance information at the same time. Specifically, a multi-level cross-attention module is designed to fuse the multi-layer features extracted from the backbone, which integrate different levels of the template and search region features, so that the rich appearance information and semantic information can be used to carry out the tracking task simultaneously. In addition, before cross-attention, a target-aware module is introduced to enhance the target feature and alleviate interference, which makes the multi-level cross-attention module more efficient to fuse the information of the target and the search region. We test the MCSiam on four tracking benchmarks and the result show that the proposed tracker achieves comparable performance to the state-of-the-art trackers.

Object Feature Tracking Algorithm based on Siame-FPN (Siame-FPN기반 객체 특징 추적 알고리즘)

  • Kim, Jong-Chan;Lim, Su-Chang
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.2
    • /
    • pp.247-256
    • /
    • 2022
  • Visual tracking of selected target objects is fundamental challenging problems in computer vision. Object tracking localize the region of target object with bounding box in the video. We propose a Siam-FPN based custom fully CNN to solve visual tracking problems by regressing the target area in an end-to-end manner. A method of preserving the feature information flow using a feature map connection structure was applied. In this way, information is preserved and emphasized across the network. To regress object region and to classify object, the region proposal network was connected with the Siamese network. The performance of the tracking algorithm was evaluated using the OTB-100 dataset. Success Plot and Precision Plot were used as evaluation matrix. As a result of the experiment, 0.621 in Success Plot and 0.838 in Precision Plot were achieved.

Siamese Neural Networks to Overcome the Insufficient Data Problems in Product Defect Detection (제품 결함 탐지에서 데이터 부족 문제를 극복하기 위한 샴 신경망의 활용)

  • Shin, Kang-hyeon;Jin, Kyo-hong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.108-111
    • /
    • 2022
  • Applying deep learning to machine vision systems for defect detection of products requires vast amounts of training data about various defect cases. However, since data imbalance occurs according to the type of defect in the actual manufacturing industry, it takes a lot of time to collect product images enough to generalize defect cases. In this paper, we apply a Siamese neural network that can be learned with even a small amount of data to product defect detection, and modify the image pairing method and contrastive loss function by properties the situation of product defect image data. We indirectly evaluated the embedding performance of Siamese neural networks using AUC-ROC, and it showed good performance when the images only paired among same products, not paired among defective products, and learned with exponential contrastive loss.

  • PDF

Human Gait Recognition Based on Spatio-Temporal Deep Convolutional Neural Network for Identification

  • Zhang, Ning;Park, Jin-ho;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.8
    • /
    • pp.927-939
    • /
    • 2020
  • Gait recognition can identify people's identity from a long distance, which is very important for improving the intelligence of the monitoring system. Among many human features, gait features have the advantages of being remotely available, robust, and secure. Traditional gait feature extraction, affected by the development of behavior recognition, can only rely on manual feature extraction, which cannot meet the needs of fine gait recognition. The emergence of deep convolutional neural networks has made researchers get rid of complex feature design engineering, and can automatically learn available features through data, which has been widely used. In this paper,conduct feature metric learning in the three-dimensional space by combining the three-dimensional convolution features of the gait sequence and the Siamese structure. This method can capture the information of spatial dimension and time dimension from the continuous periodic gait sequence, and further improve the accuracy and practicability of gait recognition.

Deep Unsupervised Learning for Rain Streak Removal using Time-varying Rain Streak Scene (시간에 따라 변화하는 빗줄기 장면을 이용한 딥러닝 기반 비지도 학습 빗줄기 제거 기법)

  • Cho, Jaehoon;Jang, Hyunsung;Ha, Namkoo;Lee, Seungha;Park, Sungsoon;Sohn, Kwanghoon
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • Single image rain removal is a typical inverse problem which decomposes the image into a background scene and a rain streak. Recent works have witnessed a substantial progress on the task due to the development of convolutional neural network (CNN). However, existing CNN-based approaches train the network with synthetically generated training examples. These data tend to make the network bias to the synthetic scenes. In this paper, we present an unsupervised framework for removing rain streaks from real-world rainy images. We focus on the natural phenomena that static rainy scenes capture a common background but different rain streak. From this observation, we train siamese network with the real rain image pairs, which outputs identical backgrounds from the pairs. To train our network, a real rainy dataset is constructed via web-crawling. We show that our unsupervised framework outperforms the recent CNN-based approaches, which are trained by supervised manner. Experimental results demonstrate that the effectiveness of our framework on both synthetic and real-world datasets, showing improved performance over previous approaches.

Dense Siamese Network for Building Change Detection (건물 변화 탐지를 위한 덴스 샴 네트워크)

  • Hwang, Gisu;Lee, Woo-Ju;Oh, Seoung-Jun
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.691-694
    • /
    • 2020
  • 최근 원격 탐사 영상의 발달로 인해 작지만 중요한 객체에 대한 탐지 가능성이 커져 건물 변화 탐지에 대한 관심이 높아지고 있다. 본 논문은 건물 변화 탐지 방법 중 가장 좋은 성능을 가진 PGA-SiamNet 의 세부 변화 탐지의 정확도가 낮은 한계점을 개선시키기 위해 DensNet 기반의 Dense Siamese Network 를 제안한다. 제안하는 방법은 공개된 WHU 데이터 세트에 대해 변화 탐지 측정 지표인 TPR, OA, F1, Kappa 에 대해 97.02%, 99.5%, 97.44%, 97.16%의 성능을 얻었다. 기존 PGA-SiamNet 에 비해 TPR 은 0.83%, F1 은 0.02%, Kappa 는 0.02% 증가하였으며, 세부 변화 탐지의 성능이 우수함을 확인할 수 있다.

  • PDF