• Title/Summary/Keyword: SiC-C films

Search Result 2,105, Processing Time 0.031 seconds

The study of X-ray detection characteristic and fabrication photoconductor film thickness for Screen printing method (Screen printing method로 제작된 의료용 광도전체 필름의 Tickness의 따른 X선 검출 특성 평가)

  • Lee, Y.K.;Yon, M.S.;KIM, D.H.;Chun, S.L.;Jung, B.D.;Gang, Sang-Sik;Park, J.G.;Mun, C.W.;Nam, S.H.
    • Journal of the Korean Society of Radiology
    • /
    • v.3 no.2
    • /
    • pp.11-16
    • /
    • 2009
  • Mercury Iodide as good sensitivity at radiation and has an easy peculiarity that operates at low voltage for other photoconductors(a-Se, a-Si, Ge, etc) Based on this characteristic, we studied about an efficiency of the digital x-ray detector in acccordance with the thickness of photoconductor. To solve the problem that is difficult to make a large area film using PVD(Physical Vapor Deposition)method, we used a PIB(Particle In Binder)method. To make a binder paste, we used a PVB(Polyvinylbutyral) as a binder and a DGME(Diethylene Glycol Monobutyl Ether), DGMEA(Diethylene Glycol Monobutyl Ether Acetate) as a solvent. Using this binder paste, we made a polycrystal mercury iodide film that has an each thickness. To evaluate the electrical properties of this films, we measured a darkcurrent, sensitivity and SNR(Signal to Noise Ratio). Mercury iodide film of the 200um thickness has good electrical properties as a result of the measurement. From this result there is a good chance that replace the existing a-Se(Amnorphous seleinum; a-se) with the mercury iodide.

  • PDF

The characteristics of bismuth magnesium niobate multi layers deposited by sputtering at room temperature for appling to embedded capacitor (임베디드 커패시터로의 응용을 위해 상온에서 RF 스퍼터링법에 의한 증착된 bismuth magnesium niobate 다층 박막의 특성평가)

  • Ahn, Jun-Ku;Cho, Hyun-Jin;Ryu, Taek-Hee;Park, Kyung-Woo;Cuong, Nguyen Duy;Hur, Sung-Gi;Seong, Nak-Jin;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.62-62
    • /
    • 2008
  • As micro-system move toward higher speed and miniaturization, requirements for embedding the passive components into printed circuit boards (PCBs) grow consistently. They should be fabricated in smaller size with maintaining and even improving the overall performance. Miniaturization potential steps from the replacement of surface-mount components and the subsequent reduction of the required wiring-board real estate. Among the embedded passive components, capacitors are most widely studied because they are the major components in terms of size and number. Embedding of passive components such as capacitors into polymer-based PCB is becoming an important strategy for electronics miniaturization, device reliability, and manufacturing cost reduction Now days, the dielectric films deposited directly on the polymer substrate are also studied widely. The processing temperature below $200^{\circ}C$ is required for polymer substrates. For a low temperature deposition, bismuth-based pyrochlore materials are known as promising candidate for capacitor $B_2Mg_{2/3}Nb_{4/3}O_7$ ($B_2MN$) multi layers were deposited on Pt/$TiO_2/SiO_2$/Si substrates by radio frequency magnetron sputtering system at room temperature. The physical and structural properties of them are investigated by SEM, AFM, TEM, XPS. The dielectric properties of MIM structured capacitors were evaluated by impedance analyzer (Agilent HP4194A). The leakage current characteristics of MIM structured capacitor were measured by semiconductor parameter analysis (Agilent HP4145B). 200 nm-thick $B_2MN$ muti layer were deposited at room temperature had capacitance density about $1{\mu}F/cm^2$ at 100kHz, dissipation factor of < 1% and dielectric constant of > 100 at 100kHz.

  • PDF

Optical properties of hydrogenated amorphous chalcogenide thin films (수소화 처리된 비정질 칼코게나이드 박막의 광학적 특성)

  • Nam, Gi-Yeon;Kim, Jun-Hyung;Cho, Sung-Jun;Lee, Hyun-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.493-496
    • /
    • 2005
  • 비정질 실리콘 (a-Si)의 수소화를 통해 활성화 수소가 비정질 실리콘내의 댕글링본드 (dangling bond) 와 결합 하므로 에너지밴드의 국재준위(localized state)를 감소시켜 불순물 도핑이 가능하게 되므로 a-Si 이 전자소자로서 이용 가능하게 되었다. 이에 착안하여 본 연구에서는 경사($0^{\circ}$, $45^{\circ}$, $80^{\circ}$) 증착을 통해 비정질 칼코게나이드($a-As_{40}Ge_{10}Se_{15}S_{35}$) 박막을 제작하고 그 박막을 수소화처리 (15~20atm at $150\sim190^{\circ}C$)하여 처리 전 후의 surface morphology 변화 및 광학적 특성 변화를 고찰하였다. $a-As_{40}Ge_{10}Se_{15}S_{35}$ 박막의 SEM 측정을 통해 $40^{\circ}$$80^{\circ}$ 경사 증착된 $a-As_{40}Ge_{10}Se_{15}S_{35}$ 박막에서 각각 18.8nm 와 160nm의 transition layer와 박막의 기둥(columnar)구조가 형성됨을 관찰하였다. 특히, $80^{\circ}$ 증착박막의 경우 수소처리전 columnar구조는 약 $65\sim70^{\circ}$의 기둥 각을 가지고 형성되었고 수소화 처리를 통해 기둥구조가 붕괴 되었다. $70^{\circ}$ 경사 증착된 $a-As_{40}Ge_{10}Se_{15}S_{35}$ 박막은 $0^{\circ}$에 따른 박막 보다 흡수단 부근에서 약 20%의 투과도 증가와 광 에너지 갭 ($E_{op}$)의 증가를 관찰 할 수 있었다. $80^{\circ}$경사 증착된 수소처리 박막에서 흡수단 부근의 투과도가 약 10%증가 되었고, 광 에너지 갭은 약 0.07eV 증가 하였고, PL intensity는 흡수단 부근에서 증가한 것을 확인 할 수 있었다. 이러한 변화들은 경사 증착된 $a-As_{40}Ge_{10}Se_{15}S_{35}$ 박막 내의 상대적으로 원자 밀도가 큰 기둥(columnar)구조가 생성되고, 이 원자 밀도가 높은 기둥구조의 댕글링본드와 주입된 수소가 흡착하여 에너지대의 국재준위를 감소시키기 때문으로 판단된다.

  • PDF

Plasma Etching Characteristics of Sapphire Substrate using $BCl_3$-based Inductively Coupled Plasma ($BCl_3$ 계열 유도결합 플라즈마를 이용한 사파이어 기판의 식각 특성)

  • Kim, Dong-Pyo;Woo, Jong-Chang;Um, Doo-Seng;Yang, Xue;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.363-363
    • /
    • 2008
  • The development of dry etching process for sapphire wafer with plasma has been key issues for the opto-electric devices. The challenges are increasing control and obtaining low plasma induced-damage because an unwanted scattering of radiation is caused by the spatial disorder of pattern and variation of surface roughness. The plasma-induced damages during plasma etching process can be classified as impurity contamination of residual etch products or bonding disruption in lattice due to charged particle bombardment. Therefor, fine pattern technology with low damaged etching process and high etch rate are urgently needed. Until now, there are a lot of reports on the etching of sapphire wafer with using $Cl_2$/Ar, $BCl_3$/Ar, HBr/Ar and so on [1]. However, the etch behavior of sapphire wafer have investigated with variation of only one parameter while other parameters are fixed. In this study, we investigated the effect of pressure and other parameters on the etch rate and the selectivity. We selected $BCl_3$ as an etch ant because $BCl_3$ plasmas are widely used in etching process of oxide materials. In plasma, the $BCl_3$ molecule can be dissociated into B radical, $B^+$ ion, Cl radical and $Cl^+$ ion. However, the $BCl_3$ molecule can be dissociated into B radical or $B^+$ ion easier than Cl radical or $Cl^+$ ion. First, we evaluated the etch behaviors of sapphire wafer in $BCl_3$/additive gases (Ar, $N_2,Cl_2$) gases. The behavior of etch rate of sapphire substrate was monitored as a function of additive gas ratio to $BCl_3$ based plasma, total flow rate, r.f. power, d.c. bias under different pressures of 5 mTorr, 10 mTorr, 20 mTorr and 30 mTorr. The etch rates of sapphire wafer, $SiO_2$ and PR were measured with using alpha step surface profiler. In order to understand the changes of radicals, volume density of Cl, B radical and BCl molecule were investigated with optical emission spectroscopy (OES). The chemical states of $Al_2O_3$ thin films were studied with energy dispersive X-ray (EDX) and depth profile anlysis of auger electron spectroscopy (AES). The enhancement of sapphire substrate can be explained by the reactive ion etching mechanism with the competition of the formation of volatile $AlCl_3$, $Al_2Cl_6$ or $BOCl_3$ and the sputter effect by energetic ions.

  • PDF

The Design and Fabrication of Conversion Layer for Application of Direct-Detection Type Flat Panel Detector (직접 검출형 평판 검출기 적용을 위한 변환층 설계 및 제작)

  • Noh, Si-Cheol;Kang, Sang-Sik;Jung, Bong-Jae;Choi, Il-Hong;Cho, Chang-Hoon;Heo, Ye-Ji;Yoon, Ju-Seon;Park, Ji-Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.1
    • /
    • pp.73-77
    • /
    • 2012
  • Recently, Interest to the photoconductor, which is used to flat form X-ray detector such as a-Se, $HgI_2$, PbO, CdTe, $PbI_2$ etc. is increasing. In this study, the film layer by using the photoconductive material with particle sedimentation was fabricated and evaluated. The quantization efficiency of the continuous X-ray with the 70 kVp energy bandwidth was analyzed by using the Monte Carlo simulation. With the results, the thickness of film with 64 % quantization efficiency was 180 ${\mu}m$ which is similar to the efficiency of 500 ${\mu}m$ a-Se film. And $HIg_2$ film has the high quantization efficiency of 74 % on 240 ${\mu}m$ thickness. The electrical characteristics of the 239 ${\mu}m$ $Hgl_2$ films produced by particle sedimentation were shown as very low dark current(under 10 $pA/mm^2$), and high sensitivity(19.8 mC/mR-sec) with 1 $V/{\mu}m$ input voltage. The SNR, which is influence to the contrast of X-ray image, was shown highly as 3,125 in low driving voltage on 0.8 $V/{\mu}m$. With the results of this study, the development of the low-cost, high-performance image detector with film could be possible by replacing the film produced by particle sedimentation instead to a-Se detector.