• Title/Summary/Keyword: SiC-AlN ceramics

Search Result 72, Processing Time 0.022 seconds

manufacture and Characterization of Glass Ceramics of P2O3-PbO-SiO2-Al2O3 System for Ic Substrate (P2O3-PbO-SiO2-Al2O3계 회로기판용 glass ceramics의 제조 및 특성평가)

  • 김용철
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.4 no.2
    • /
    • pp.55-62
    • /
    • 1997
  • P2O3-PbO-SiO2-Al2O3계 조성을 이용하여 저온에서 소결이 가증하며 열팽창계수와 유전율이 낮은 회로기판용 glass ceramics를 제조하고자 하였다. 155$0^{\circ}C$에서 2시간 동안 용 융하여 제조한 모유리의열팽창 거동을 확인하기 위하여 TMA로 열분석을 실시하였으며 이 유리를 분말화하여 80$0^{\circ}C$에서 열처리 하였다. 이때 cristobalite 형성억제제로 Ga2O3를 사용 하였으며 Ga2O3 첨가량에 따른 억제 영향을 XRD를 통행 확인하였다. Ga2O3를 첨가한 유리 분말로 pellet을 제조하여 열처리를 하였고 소결시편의 표면을 SEM을 통해 관찰하였다. 열 처리한 pellet에 silver paste를 screen printing하여 유전율을 측정하였으며 조성에 따른 유 전율의 변화를 확인하였다.

Liquid-Phase Sintered SiC Ceramics with Oxynitride Additives

  • Rixecker, G.;Biswas, K.;Wiedmann, I.;Sldinger, F.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 2000.06a
    • /
    • pp.1-33
    • /
    • 2000
  • Silicon carbide ceramics with sintering additives from the system AlN-Y$_2$O$_3$ can be gas-pressure sintered to theoretical density. While commonly a combination of sesquioxides is used such as Al$_2$O$_3$-Y$_2$O$_3$, the oxynitrid additives offer the advantage that only a nitrogen atmosphere is require instead of a powder. By starting form a mixture of ${\beta}$-SiC and ${\alpha}$-SiC, and by performing dedicated heat treatments after densification, anisotropic grain growth is obtained which leads to a platelet microstructure showing enhance fracture toughness. In the present work, recent improvement of the mechanical behaviour of these materials at ambient and high temperatures is reported. By means of a surface oxidation treatment in air it is possible to obtain four-point bending strengths in excess of 1 GPa, and the strength retention at high temperatures is significantly improved.

  • PDF

Phase and microstructure of hot-pressed SiC-AlN solid solutions (열간가압소결에 의한 SiC-AIN 고용체의 상 및 미세구조)

  • Chang-Sung Lim;Chang-Sam Kim;Deock-Soo Cheong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.2
    • /
    • pp.238-246
    • /
    • 1996
  • High-density SiC-AIN solid solutions were fabricated from powder mixtures of $\beta$-SiC and AIN by hot-pressing in the 1870 to $2030^{\circ}C$ temperature range. The reaction of AIN and $\beta$-SiC (3C) powder transformed to the 2 H (wurzite) structure appeared to depend on the temperature and SiC/A1N ratio and seeds present. The crystalline phases consisted of a SiC-rich solid-solution phase and an A1N-rich solid-solution phase. At $2030^{\circ}C$ for 1 h, for a composition of 50 % AIN/50 % SiC with a seeding of $\alpha$-SiC, the complete solid solution could be obtained and the microstructures are equiaxed with a relatively homogeneous grain size of 2 H phases. The variation of the seeding of $\alpha$-SiC in SIC-A1N solid solutions could be attributed to the transformation behaviour and differences in size and shape of the grains, as well as to other factors, such as grain size distributions, compositional inhomogeneity, and structural defects.

  • PDF

Recent Advances in Microstructural Tailoring of Silicon Nitride Ceramics and the Effects on Thermal Conductivity and Fracture Properties

  • Becher Paul F.
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.8 s.279
    • /
    • pp.525-531
    • /
    • 2005
  • Tailoring the microstructure and the composition of silicon nitride ceramics can have profound effects on their properties. Here it is shown that the grain growth behavior, in particular its anisotropy, is a function of the specific additives, which allow one to tune the microstructure from one consisting of more equiaxed grains to one with very elongated grains. Recent studies are discussed that provide an understanding of the atomic level processes by which these additives influence grain shapes. Next the microstructural (and compositional) parameters are discussed that can be used to modify the thermal conductivity, as well as fracture toughness of silicon nitride ceramics. As a result of the open <0001> channels in $\beta-Si_3N_4$, the c-axis conductivity can be exceptionally high. Thus, the formation of elongated c-axis grains, particularly when aligned can result in conductivity values approaching those of AlN ceramics. In addition, the controlled formation of elongated grains can also be used to significantly enhance the fracture toughness. At the same time, both properties are shown to be affected by the composition of the densification additives. Utilizing such understanding, one will be able to tailor the ceramics to achieve the properties desired for specific applications.

Effect of Increased Oxygen Content due to Intensive Milling on Phase and Microstructural Development of Silicon Nitride

  • Kim, Hai-Doo;Ellen Y. Sun;Paul F. Becher;Kim, Hyo-Jong;Han, Byung-Dong;Park, Dong-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.5
    • /
    • pp.405-411
    • /
    • 2001
  • Compacts of a mixture of fine $\alpha$-Si$_3$N$_4$powders, 6% $Y_2$O$_3$and 1% $Al_2$O$_3$were attrition milled time on phase and microstructural development in silicon nitride ceramics. The sintered surface and the interior showed different behaviors in phase and microstructral developments. Increased oxygen content with increased milling time of powder mixture leads to the formation of Si$_2$$N_2$O phase at temperatures as low as 155$0^{\circ}C$. Si$_2$$N_2$O is stable in the interior of the samples but unstable in the surface region of the specimen sintered at higher temperature. This results in a duplex structure where the interior consists of Si$_2$$N_2$O grains dispersed in $\beta$-Si$_3$N$_4$matrix and a surface which contains only $\beta$-Si$_3$N$_4$. The alpha to beta phase transformation and the microstructural development are shown to be influenced by the formation and decomposition of the Si$_2$$N_2$O.

  • PDF

Determination of Efficient Superfinishing Conditions for Mirror Surface Finishing of Engineering Ceramics (엔지니어링 세라믹스의 경면연마를 위한 효율적인 슈퍼피니싱 조건의 결정)

  • Kim, Sang-Kyu;Cho, Young-Tae;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.5
    • /
    • pp.76-81
    • /
    • 2014
  • The Engineering ceramics have some excellent properties as materials for modern mechanical and electrical components. It is, however, not easy to polish them efficiently because they are strong and hard. This study is carried out to obtain a mirror surface on engineering ceramics by surperfinishing with high efficiency. To achieve this, we conducted a series of polishing experiments using representative engineering ceramics, such as $Al_2O_3$, SiC, $Si_3N_4$ and $ZrO_2$, using diamond abrasive film from the perspective of oscillations peed, the rotational speed of the workpiece, contact roller hardness, contact pressure and feed rate. Furthermore, the polishing efficiency and characteristics for engineering ceramics are discussed on the basis of optimal polishing time and surface roughness. Our results confirmed that efficient superfinishing conditions and polishing characteristics of engineering ceramics can be determined.

A Study on Laser Assisted Machining for Silicon Nitride Ceramics (IV) - Mechanism and Application of LAM for Silicon Nitride Ceramics - (질화규소 세라믹의 레이저 예열선삭에 관한 연구 (IV) - 질화규소 세라믹의 레이저예열선삭 메커니즘 및 적용 -)

  • Kim, Jong-Do;Lee, Su-Jin;Park, Seo-Jeong;Lee, Jae-Hoon
    • Journal of Welding and Joining
    • /
    • v.28 no.6
    • /
    • pp.40-44
    • /
    • 2010
  • Laser assisted machining (LAM) has been researched in order to machine the silicon nitride ceramics economically and effectively. LAM is an effective machining method by local heating of the cutting part to the softening temperature of the silicon nitride using laser beam. When silicon nitride ceramics is heated using a laser beam, the surface of silicon nitride ceramic is softened, oxidized and decomposed. And then surface hardness is decreased. Through machining in low viscosity and hardness conditions, silicon nitride was machined effectively and the life span of tool was increased. The plastic deformation was occurred due to softening of amorphous YSiAlON above $ 1,000^{\circ}C$. Transgranular fracture of ${\beta}-Si_3N_4$ was occurred when YSiAlON was not softened, but mostly intergranular fracture was occurred by the plastic deformation of softened YSiAlON.

Sintered-reaction Bonded Silicon Nitride Densified by a Gas Pressure Sintering Process - Effects of Rare Earth Oxide Sintering Additives

  • Lee, Sea-Hoon;Ko, Jae-Woong;Park, Young-Jo;Kim, Hai-Doo;Lin, Hua-Tay;Becher, Paul
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.4
    • /
    • pp.318-324
    • /
    • 2012
  • Reaction-bonded silicon nitrides containing rare-earth oxide sintering additives were densified by gas pressure sintering. The sintering behavior, microstructure and mechanical properties of the resultant specimens were analyzed. For that purpose, $Lu_2O_3-SiO_2$ (US), $La_2O_3$-MgO (AM) and $Y_2O_3-Al_2O_3$ (YA) additive systems were selected. Among the tested compositions, densification of silicon nitride occurred at the lowest temperature when using the $La_2O_3$-MgO system. Since the $Lu_2O_3-SiO_2$ system has the highest melting temperature, full densification could not be achieved after sintering at $1950^{\circ}C$. However, the system had a reasonably high bending strength of 527 MPa at $1200^{\circ}C$ in air and a high fracture toughness of 9.2 $MPa{\cdot}m^{1/2}$. The $Y_2O_3-Al_2O_3$ system had the highest room temperature bending strength of 1.2 GPa.

Microstructure Control of Porous In-situ Synthesized $Si_2N_2O-Si_3N_4$ Ceramics

  • Paul, Rajat Kanti;Lee, Chi-Woo;Kim, Hai-Doo;Lee, Byong-Taek
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.325-326
    • /
    • 2006
  • Using $6wt%Y_2O_3-2wt%Al_2O_3$ as sintering additives and Si as a raw powder, the continuously porous in-situ $Si_2N_2O-Si_3N_4$ bodies were fabricated by multi-pass extrusion process and their microstructures were investigated depending on the addition of carbon (0-9wt%) in the mixture powder. The introduction of $Si_2N_2O$ fibers observed in the unidirectional continuous pores as well as in the pore-frame regions of the nitrided bodies can be an effective method in increasing the filtration efficiency. In the case of no carbon addition, the network type $Si_2N_2O$ fibers with high aspect ratio appeared in the continuous pores with diameters of 150-200 nm. However, in the case of 9wt% C addition, the fibers were found without any network type and had diameters of 200-250 nm.

  • PDF

Mechanical Properties of Partially Stabilized $\alpha$-Sialon Synthesized from Kimcheon Quartzite (김천규석으로부터 제조한 부분안정화 $\alpha$-Sialon의 기계적 물성)

  • 서원선;조덕호;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.2
    • /
    • pp.143-153
    • /
    • 1988
  • In order to synthesize the partially stabilized $\alpha$-Sialon, A1N and Y2O3 were added to synthesized $\alpha$-Si3N4. The phase composition, mechanical properties, micro structure, etc, of the synthesized $\alpha$-Sialon were investigated. Partially stabilized $\alpha$-Sialon ceramics could be synthesized from the composition which was a little deviated from x=0.4, x=0.6 composition along the Si3N4.0.1Y2O3:0.9AlN tie line at 1750-180$0^{\circ}C$ for 2 hrs in N2 atmosphere. It is assumed that A1N is more closely related than Y2O3 to the formation of $\alpha$-Sialon, and that A1N is more easily dissolved into $\alpha$-structure than into $\beta$-structure. In Ya2O3-rich phase mechanical properties were observed to be poor because of formation of mellilite, grain growth, and thermal decomposition of $\alpha$-Sialon. The maximum values of M.O.R, KIC and hardness are 723 MPa, 4.5MN/㎥/2 and 19.3 GPa, respectively, and they were observed for the $\alpha$-Sialon ceramics sintered at 178$0^{\circ}C$.

  • PDF