• Title/Summary/Keyword: SiC powder

Search Result 779, Processing Time 0.027 seconds

Application of AE for Fracture Behavior Evaluation of Carbon-fiber/SiC Reinforced Plastic Composites

  • Ryu, Yeong Rok;Kwon, Oh Heon
    • Composites Research
    • /
    • v.30 no.5
    • /
    • pp.267-272
    • /
    • 2017
  • In this study, SiC powder was added to twill woven carbon fiber reinforced plastic (CFRP) composites to improve its mechanical properties. An acoustic emission (AE) frequency analysis method was suggested for the prediction of failure behaviors. Tensile tests were conducted and the fracture characteristics of each component of the SiC reinforced composite were evaluated using AE. The results showed that SiC powder improved the strength of twill woven CFRP composites and the fracture behavior of the SiC reinforced CFRP composite and its crack extension could be effectively evaluated on the basis of the specific AE frequency bands which are 100 to 228 kHz and 428 to 536 kHz upon the resin failure and 232 to 424 kHz due to addition of SiC powder and 576 to 864 kHz at the fiber breakage.

Observation of Densification Behavior during the Sintering of Ni-added $MoSi_2$ Powder Compacts (Ni을 첨가한 $MoSi_2$분말성형체의 소결시 치밀화거동의 관찰)

  • 이승익
    • Journal of Powder Materials
    • /
    • v.4 no.4
    • /
    • pp.298-303
    • /
    • 1997
  • The activated sintering behavior of $MoSi_2$ powder compacts with addition of 0.5 and 1.0 wt.%Ni during the sintering under As atmosphere was studied. The shrinkage was measured and the microstructures were observed by SEM (scanning electron microscopy) and BEI (backscattered electron image) along with the phase analysis by EDS during heating up to 155$0^{\circ}C$ and holding for various time at 155$0^{\circ}C$. The most of shrinkage occurred upon heating and 92% of theoretical density was attained after sintering for 1 hr at 155$0^{\circ}C$. However, little shrinkage ensued even for prolonged sintering over 1 hr at 155$0^{\circ}C$. A liquid film formed at about 135$0^{\circ}C$ along necks and grain boundaries. The polyhedral grain structure composed of $(Mo,Ni)_5Si_3$and $Ni_2Si$ across the $MoSi_2$ grain boundary developed at 155$0^{\circ}C$. It was concluded that the activated sintering of $MoSi_2$ powder by Ni led to the diffusion of Si into Ni decreasing the liquidus temperature and the enhanced diffusion of Mo and Si through such a liquid phase and/or interboundary of $(Mo,Ni)_5Si_3$.

  • PDF

Bending Strength of Crack Healed $Si_3N_4/SiC$ Composite Ceramics by $SiO_2$ Colloidal

  • Park, Sung-Won;Kim, Mi-Kyung;Ahn, Seok-Hwan;Nam, Ki-Woo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.166-168
    • /
    • 2006
  • $Si_3N_4/SiC$ composite ceramics was sintered in order to investigate their bending strength behavior after crack healing. $Y_2O_$ and $TiO_2$ power was added as sintering additives to enhance it's sintering property. A three-point bending specimen was cut out from sintered plates. About $100\;{\mu}m$ semi-circular surface cracks were made on the center of the tension surface of the three-point bending specimen using Vickers indenter. After the crack-healing processing from $500^{\circ}C$ to $1300^{\circ}C$, for 1 h, in air, the bending strength behavior of these crack-healed specimen coated with $SiO_2$ colloidal were determined systematically at room temperature. $Si_3N_4/SiC$ ceramics using additive powder ($Y_2O_3+TiO_2$) was superior to that of additive powder $Y_2O_3$. The additive powder $TiO_2$ exerted influence at growth of $Si_3N_4$. The optimum crack healing conditions coated $SiO_2$ colloidal were $1000^{\circ}C$ at $Si_3N_4/SiC$ using additive powder ($Y_2O_3+TiO_2$), and $1300^{\circ}C$ at $Si_3N_4/SiC$ using additive powder $Y_2O_3$.

  • PDF

Synthesis ofSialon-SiC Composite Powder from Alkoxides and the Powder Properties(I) (알콕사이드로부터 Sialon-SiC계 복합분말의 합성과 분말특성(I))

  • 전명철;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.2
    • /
    • pp.265-273
    • /
    • 1990
  • Fine Si-Al-OH-C coprecipitate powders were prepared from Si(OC2H5)4, Al(i-OC3H7)3, and carbon black by a hydrolysis method before fabrication of Sialon-SiC composite powder by carbothermal reduction at 1350$^{\circ}C$ for 10h under N2/H2 mixed atmosphere. The characterization of the synthesized Sialon-SiC composite powders was performed using XRD, BET, SEM, TEM and particle size analysis methods. The average particle size and specific surface area of the synthesized Sialon-SiC composite powder were 0.13$\mu\textrm{m}$ and 20.1㎡/g, respectively when Z=1 and N2 : H2=50 : 50.

  • PDF

The Effect of H2 Flow Rate and TMS Concentration on Synthesizing Ultrafine $\beta$-SiC Powder by Vapor Phase Reaction (기상반응에 의한 $\beta$-SiC 초미분말 합성시 수소 가스유량과 TMS 농도의 영향)

  • 유용호;어경훈;소명기
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.8
    • /
    • pp.853-858
    • /
    • 1999
  • To investigate the effect of H2 flow rate and TMS[Si(CH3)4] concentration on synthesizing ultrafine ${\beta}$-SiC powder by vapor phase reaction the experiment was performed at 1100$^{\circ}C$ of the reaction temperature under the condition of 200-2000 cc/min of H2 gas flow rate and 1-10% of TMS concentration respectively. The shape of ${\beta}$-SiC particles synthesized was spherical and the size of particles decreased and the distribution of particles was more uniform with increasing H2 gas flow rate. In this case Si powders were coexisted with ${\beta}$-SiC Pure and ultrafine ${\beta}$-SiC powders without Si were obtained under the condition of above 2% of TMS concentration and below 1500 cc/min of H2 gas flow rate.

  • PDF

Fabrication of SiC-TiC Composites via Mechanochemical Synthesis

  • Park, Heon-Jin;Lee, Ki-Min;Kim, Hyung-Jong;Lee, June-Gunn
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.4
    • /
    • pp.314-318
    • /
    • 2001
  • SiC-TiC composites have been fabricated by using a mechanochemical processing of a mixture of Si, Ti, and C at room temperature and subsequent hot pressing. TiC powders have been obtained by the mechanochemical processing of a mixture of Ti and C whereas SiC powders has not been obtained from a mixture of Si and C. By using the exothermic reaction between Ti and C, SiC-TiC powder could be obtained from the mixture of Si, Ti, and C using the mechanochemical processing for more than 12h. The X-ray diffraction analysis has shown that the powder subjected to the mechanochemical processing consisted of the particles having crystallite size below 10nm. Fully densified SiC-TiC composites have been obtained by hot-pressing of the powder at 1850$\^{C}$ for 3h and it has shown comparable mechanical properties to those of the SiC-TiC composites prepared from the commercially available SiC and TiC powders. Flexural strength of 560 MPa and fracture toughness of 4.8 MP$.$am$\_$1/2/ have been shown for the SiC-TiC composites with composition corresponding to 0.75:0.25:1 mole ratio of Si:Ti:C.

  • PDF

Synthesis of Silicon Carbide Nano-Powder from a Silicon-Organic Precursor by RF Inductive Thermal Plasma (RF 유도 열플라즈마를 이용한 유기 용매로 부터의 탄화규소 나노 분말 합성)

  • Ko, Sang-Min;Koo, Sang-Man;Kim, Jin-Ho;Cho, Woo-Seok;Hwang, Kwang-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.523-527
    • /
    • 2012
  • Silicon carbide (SiC) has recently drawn an enormous amount of industrial interest due to its useful mechanical properties, such as its thermal resistance, abrasion resistance and thermal conductivity at high temperatures. In this study, RF thermal plasma (PL-35 Induction Plasma, Tekna CO., Canada) was utilized for the synthesis of high-purity SiC powder from an organic precursor (hexamethyldisilazane, vinyltrimethoxysilane). It was found that the SiC powders obtained by the RF thermal plasma treatment included free carbon and amorphous silica ($SiO_2$). The SiC powders were further purified by a thermal treatment and a HF treatment, resulting in high-purity SiC nano-powder. The particle diameter of the synthesized SiC powder was less than 30 nm. Detailed properties of the microstructure, phase composition, and free carbon content were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), a thermogravimetric (TG) analysis, according to the and Brunauer-Emmett-Teller (BET) specific surface area from N2 isotherms at 77 K.

Densification of Ultrafine $Si_3-N_4-SiC$ Powder Compacts by Rapid Heating under Controlled Thermograms (급속가열 이력 제어에 의한 $Si_3-N_4-SiC$계 미분말 시편의 치밀화)

  • 이형직
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.7
    • /
    • pp.832-838
    • /
    • 1995
  • The densifying behavior of ultrafine amorphous Si3N4 (about 20 nm)-$\beta$-SiC (about 40~80 nm) powders (O2 : 1.3~15wt%, 0$700^{\circ}C$ within 15 sec and then immediately cooled and held at 135$0^{\circ}C$ for 10 min in N2 atmosphere without resorting to additives using a Xe image heating apparatus. Using an ultrafine pure Si3N4 powder with particle size less than 30nm, further more, mixed with an appropriate amount of $\beta$-SiC, was found to be advantageous to obtain uniform and homogeneous microstructure. In addition, ultrafine Si3N4 powders were also proved to be effective as sintering additive on densifying large sized Si3N4 powder compacts.

  • PDF

Properties of Powders and Sintered Bodies of $\beta$-SiC Prepared from Jecheon Quartzite (제천규석으로부터 제조한 $\beta$-SiC분말 및 소결체의 특성)

  • 이홍림;신석호;배철훈;김무경
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.2
    • /
    • pp.139-146
    • /
    • 1987
  • ${\beta}$-SiC powders were prepared by the simultaneous reduction and carbiding of Jecheon quartzite at 1400$^{\circ}C$ for 7 hours in hydrogen atmosphere, using graphite or carbon black as the reducing and carbiding reagent. The prepared SiC powder was acid-treated with the mixture of fluoric acid and hydrochloric acid at room temperature and also by heating on an alcohol lamp for one hour, respectively. The impurities were mostly eliminated and the purity of SiC became 98.5% after hot acid treatment. The specific surface area of SiC powder was also increased up to 115㎡/g by hot acid treatment. This pure and fine SiC powder was hot-pressed at 1900$^{\circ}C$ for 30min, using 5wt% Al2O3 as a sintering aid. The density, M.O.R., KIC and hardness of the hot-pressed SiC ceramics were 3.195g/㎤, 48.7Kgf/$\textrm{mm}^2$, 5.4MN/㎥/2 and 2,182Kgf/$\textrm{mm}^2$, respectively.

  • PDF