• Title/Summary/Keyword: SiC membrane

Search Result 149, Processing Time 0.033 seconds

The characteristics of polycrystalline 3C-SiC microhotplates for high temperature M/NEMS (고온 M/NEMS용 3C-SiC 마이크로 히터 특성)

  • Jeong, Jae-Min;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.252-252
    • /
    • 2008
  • The microhotplates consisting of a Pt-ased heating element on AlN/poly 3C-SiC layers were fabricated. The microhotplate has a $600{\mu}m{\times}600{\mu}m$ square shaped membrane which made of $1{\mu}m$ thick ploycrystalline 3C-SiC suspended by four legs. 3C-SiC is known for excellent chemical durability, mechanical strength and sustaining of high temperature. The membrane is fabricated by surface micromachining using oxidized Si sacrificial layer. The Pt thin film is used for heating material and resist temperature sensor. The fabrication methodology allows intergration of an array of heating material and resist temperature detector. For reasons of a short response time and a high sensitivity a uniform temperature profile is desired. The dissipation of microhotplate was examined by a IR thermoviewer and the power consumption was measured. Measured and simulated results are compared and analyzed. Thermal characterization of the microhotplates shows that significant reduction in power consumption was achieved using suspended structure.

  • PDF

The Fabrication of Micro-heaters with Low Consumption Power Using SOI and Trench Structures and Its Characteristics (SOI와 트랜치 구조를 이용한 초저소비전력형 미세발열체의 제작과 그 특성)

  • 정귀상;홍석우;이원재;송재성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.3
    • /
    • pp.228-233
    • /
    • 2001
  • This paper presents the optimized design, fabrication and thermal characteristics of micro-heaters for thermal MEMS (micro elelctro mechanical system) applications usign SOI (Si-on-insulator) and trench structures. The micro-heater is based on a thermal measurement principle and contains for thermal isolation regions a 10㎛ thick Si membrane with oxide-filled trenches in the SOI membrane rim. The micro-heater was fabricated with Pt-RTD (resistance thermometer device) on the same substrate by suing MgO as medium layer. The thermal characteristics of the micro-heater wit the SOI membrane is 280$\^{C}$ at input power 0.9W; for the SOI membrane with 10 trenches, it is 580$\^{C}$ due to reduction of the external thermal loss. Therefore, the micro-heater with trenches in SOI membrane rim provides a powerful and versatile alternative technology for improving the performance of micro-thermal sensors and actuators.

  • PDF

Direct Ethanol Fuel Cell (DEFC) Fabricated with Ceramic Membrane (세라믹 멤브레인 활용 직접 에탄올 연료전지)

  • Jeong, Jae Geun;Yun, Young Hoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.4
    • /
    • pp.419-424
    • /
    • 2014
  • Direct ethanol fuel cell has been fabricated with ceramic membrane. A porous silicon carbide (SiC) membrane having approximately 30% porosity has been applied for a direct ethanol proton exchange membrane (DE-PEM) fuel cell. A horizontal type cell having Pt ($18mg/cm^2$) catalyst layer on both side of the ceramic membrane was used for the demonstration test. The ethanol oxidation based-fuel cell stack showed very high voltage (1.289V) and measurable current level (68mA) even though at room temperature.

Deposition of $SiC_xN_y$ Thin Film as a Membrane Application

  • Huh, Sung-Min;Park, Chang-Mo;Jinho Ahn
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.1
    • /
    • pp.39-43
    • /
    • 2001
  • $SiC_{x}N$_{y}$ film is deposited by electron cyclotron resonance plasma chemical vapor deposition system using $SiH_4$(5% in Ar), $CH_4$ and $N_2$. Ternary phase $SiC_{x}N$_{y}$ thin film deposited at the microwave power of 600 W and substrate temperature of 700 contains considerable amount of strong C-N bonds. Change in $CH_4$flow rate can effectively control the residual film stress, and typical surface roughness of 34.6 (rms) was obtained. Extreme]y high hardness (3952 Hv) and optical transmittance (95% at 633 nm) was achieved, which is suitable for a LIGA mask membrane application.

  • PDF

Design on ultra low power consumption microhotplates based on 3C-SiC for high temperatures (고온용 저전력소비형 3C-SiC 마이크로 히터의 설계)

  • Jeong, Jae-Min;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.385-386
    • /
    • 2008
  • This paper reports the design of the ultra low power consumption microhotplates for high temperatures. The microhotplates consisting of a platinum-based heating element on AlN/poly 3C-SiC layers were designed. The microhotplate is a $600\times600{\mu}m^2$ square shaped membrane made of $1{\mu}m$ thick ploy 3C-SiC suspended by four legs. The microhotplate was compared with $Si_3N_4/SiO_2/Si_3N_4$(NON) structure microhotplate by COMSOL simulation system. Thermal uniformity, power consumption and thermal characterizations of microhotplates based on 3C-SiC thin film are better than microhotplates with NON structure.

  • PDF

Antitumor Effects of Camptothecin Combined with Conventional Anticancer Drugs on the Cervical and Uterine Squamous Cell Carcinoma Cell Line SiHa

  • Ha, Sang-Won;Kim, Yun-Jeong;Kim, Won-Yong;Lee, Chung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.2
    • /
    • pp.115-121
    • /
    • 2009
  • Functional defects in mitochondria are involved in the induction of cell death in cancer cells. We assessed the toxic effect of camptothecin against the human cervical and uterine tumor cell line SiHa with respect to the mitochondria-mediated cell death process, and examined the combined effect of camptothecin and anticancer drugs. Camptothecin caused apoptosis in SiHa cells by inducing mitochondrial membrane permeability changes that lead to the loss of mitochondrial membrane potential, decreased Bcl-2 levels, cytochrome c release, caspase-3 activation, formation of reactive oxygen species and depletion of GSH. Combination of camptothecin with other anticancer drugs (carboplatin, paclitaxel, doxorubicin and mitomycin c) or signaling inhibitors (farnesyltransferase inhibitor and ERK inhibitor) did not enhance the camptothecin-induced cell death and caspase-3 activation. These results suggest that camptothecin may cause cell death in SiHa cells by inducing changes in mitochondrial membrane permeability, which leads to cytochrome c release and activation of caspase-3. This effect is also associated with increased formation of reactive oxygen species and depletion of GSH. Combination with other anticancer drugs (or signaling inhibitors) does not appear to increase the anti-tumor effect of camptothecin against SiHa cells, but rather may reduce it. Combination of camptothecin with other anticancer drugs does not seem to provide a benefit in the treatment of cervical and uterine cancer compared with camptothecin monotherapy.

Separation of Hydrogen-Nitrogen Gases by PDMS-SiO2·B2O3 Composite Membranes (PDMS-SiO2·B2O3 복합막에 의한 수소-질소 기체 분리)

  • Lee, Suk Ho;Kang, Tae Beom
    • Membrane Journal
    • /
    • v.25 no.2
    • /
    • pp.115-122
    • /
    • 2015
  • $SiO_2{\cdot}B_2O_3$ was prepared by trimethylborate (TMB)/tetraethylorthosilicate (TEOS) mole ratio 0.01 at $800^{\circ}C$. PDMS[poly(dimethysiloxane)]-$SiO_2{\cdot}B_2O_3$ composite membranes were prepared by adding porous $SiO_2{\cdot}B_2O_3$ to PDMS. To investigate the characteristics of PDMS-$SiO_2{\cdot}B_2O_3$ composite membrane, we observed PDMS-$SiO_2{\cdot}B_2O_3$ composite membrane using TG-DTA, FT-IR, BET, X-ray, and SEM. PDMS-$SiO_2{\cdot}B_2O_3$ composite membrane was studied on the permeabilities of $H_2$ and $N_2$ and the selectivity ($H_2/N_2$). Following the results of TG-DTA, BET, X-ray, FT-IR, $SiO_2{\cdot}B_2O_3$ was the amorphous porous $SiO_2{\cdot}B_2O_3$ with $247.6868m^2/g$ surface area and $37.7821{\AA}$ the mean of pore diameter. According to the TGA measurements, the thermal stability of PDMS-$SiO_2{\cdot}B_2O_3$ composite membrane was enhanced by inserting $SiO_2{\cdot}B_2O_3$. SEM observation showed that the size of dispersed $SiO_2{\cdot}B_2O_3$ in the PDMS-$SiO_2{\cdot}B_2O_3$ composite membrane was about $1{\mu}m$. The increasing of $SiO_2{\cdot}B_2O_3$ content in PDMS leaded the following results in the gas permeation experiment: the permeability of both $H_2$ and $N_2$ was increased, and the permeability of $H_2$ was higher than $N_2$, but the selectivity($H_2/N_2$) was decreased.

Design fabrication and characteristics of 3C-SiC micro heaters for high temperature, high powers (고온, 고전압용 SiC 마이크로 히터 설계, 제작 및 특성)

  • Jeong, Jae-Min;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.113-113
    • /
    • 2009
  • This paper describes the characteristics of a poly 3C-SiC micro heater which was fabricated on $AlN(0.1{\mu}m)/3C-SiC(1.0{\mu}m)$ suspended membranes by surface micro- machining technology. The 3C-SiC and AlN thin films which have wide energy bandgap and very low lattice mismatch were used sensors for high temperature and voltage environments. The 3C-SiC thin film was used as micro heaters and temperature sensor materials simultaneously. The implemented 3C-SiC RTD (resistance of temperature detector) and the power consumption of micro heaters were measured and calculated. The TCR (thermal coefficient of the resistance) of 3C-SiC RTD is about -5200 $ppm/^{\circ}C$ within a temperature range from $25^{\circ}C$ to $50^{\circ}C$ and -1040 $ppm/^{\circ}C$ at $500^{\circ}C$. The micro heater generates the heat about $500^{\circ}C$ at 10.3 mW. Moreover, durability of 3C-SiC micro heaters in high voltages is better than pt micro heaters. A thermal distribution measured and simulated by IR thermovision and COMSOL is uniform on the membrane surface.

  • PDF

Gas Permaeation Characteristics of Ceramic Membranes by the Pressurized Sol-Gel Coating Techique (가압 졸-겔 코팅법에 의한 세라믹막의 기체투과 특성)

  • 현상훈;강범석
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1993.04a
    • /
    • pp.35-35
    • /
    • 1993
  • 튜브형 $\alpha-Al_2O_3$ 담체에 졸-겔 침지코팅법과 가압코팅(pressurized coating) 법으로 boehmite 졸과 극미세 입자 SiO$_2$ 및 TiO$_2$ 졸을 코팅한 후 200$\circ$C~500$\circ$C 에서 열처리하여 복합분리막을 제조하였다.

  • PDF