• Title/Summary/Keyword: SiC filter

Search Result 115, Processing Time 0.021 seconds

Fabrication and Properties of Reaction Bonded SiC Hot Gas Filter Using Si Melt Infiltration Method (용융 Si 침윤방법에 의한 반응소결 탄화규소 고온가스 필터의 제조 및 특성)

  • 황성식;김태우
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.9
    • /
    • pp.891-896
    • /
    • 2003
  • Novel fabrication technique was developed for high strength Reaction-Bonded SiC (RBSC) hot gas filter for use in IGCC (Integrated Gasification Combined Cycle) system. The room and high temperature fracture strengths for Si-melt infiltrated reaction-bonded SiC were 50-123, and 60-66 MPa, respectively. The average pore size was 60-70 $\mu\textrm{m}$ and the porosity was about 34 vol%. RBSC infiltrated with molten silicon showed improved fracture strength at high temperature, as compared to that of clay-bonded SiC, due to SiC/Si phase present within SiC phase. The thickness for SiC/Si phase was increased with increasing powder particle size of SiC from 10 to 34 $\mu\textrm{m}$. Pressure drop with dust particles showed similar response as compared to that for Schumacher type 20 filter. The filter fabricated in the present study showed good performance in that the filtered powder size was reduced drastically to below 1 $\mu\textrm{m}$ within 4 min.

Uncontrolled Regeneration Characteristics of SiC DPFs using DPF Test Rig (DPF 테스트 리그를 이용한 SiC DPF의 이상연소 특성)

  • Oh, Kwang-Chul;Lee, Chun-Hwan;Cho, Taik-Dong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.80-86
    • /
    • 2008
  • Uncontrolled regeneration characteristics of two different type SiC DPFs(diesel particulate filters) were investigated by DPF test rig devised to facilitate DPF evaluation, especially for regeneration and MSL(maximum soot loading) test similar to engine dynamometer test. In order to estimate the limits of maximum filter temperature and temperature gradient causing filter fracture, such as crack or whitening, the temperature distributions inside the filter were measured by thermocouples. The maximum filter temperature was observed near the rear plane of central filter region due to heat accumulation by exothermic reaction of PM but the maximum temperature gradient occurred at the boundary of high filter temperature. These two parameters induced the different SiC DPFs to fracture with different modes, whitening and crack.

Fabrication and Properties of the SiC Candle Filter by Vacuum Extrusion and Ramming Process (진공 압출성형 및 래밍성형 공정에 의한 탄화규소 캔들 필터 제조 및 특성)

  • Shin, Myung-Kwan;Han, In-Sub;Seo, Doo-Won;Kim, Se-Young;Woo, Sang-Kuk;Lee, Seoung-Won;Kim, Young-Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.6
    • /
    • pp.662-667
    • /
    • 2009
  • Porous SiC candle filter preforms were fabricated by extrusion and ramming process. To fabricate SiC candle filter preform, commercially available 85 ${\mu}m\;{\alpha}-$-SiC powder and 44 ${\mu}m$ mullite, CaC$O_3$ powder were used as the starting materials. The candle type preforms were fabricated by vacuum extrusion and ramming process, and sintered at $1400{^{\circ}C}$ 2 h in air atmosphere. The effect of forming method on porosity, density, strength (flexural and compressive strength) and microstructure was investigated. Also, corrosion test of the sintered candle filter specimens as forming method was performed at $600{^{\circ}C}$ in IGCC syngas atmosphere. The sintered SiC filter which was formed by ramming process has more higher density and exhibit higher strength than extruded filter. Its maximum density and 3-point bending strength were 2.00 g/$cm^3$ and 45 MPa, respectively.

Degradation analysis of SiC fiber at elevated temperature for dust filtering applications (분진필터링 적용을 위한 SiC 섬유의 고온 열화분석)

  • Joo, Young Jun;Park, Cheong Ho;Khishigbayar, Khos-Erdene;Kim, Cheol Jin
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.1
    • /
    • pp.28-33
    • /
    • 2017
  • SiC fiber can be used up to $1800^{\circ}C$ in both inert and air atmosphere without any problems such as melting and oxidation. SiC fibers can be applied to dust filtering processes as a bag filter at a high temperature above $700^{\circ}C$, which is far beyond the temperature range of currently available industrial bag filter. However the studies for the degradation of SiC fibers were still lacked in the harsh environment of steel industries and thermoelectric power plants. In this study, SiC fibers were reacted with steel dust and thermal power plant dust at a high temperature of $500^{\circ}C$ or higher, and the degraded shape of the fiber surface was observed by SEM. Also the degree of oxygen diffusion on the surface and inside of SiC fiber was analyzed by EDS.

Development of a New-type Apparatus Decomposing Volatile Organic Compounds using a Combination System of an Electrical Exothermic SiC Honeycomb and a Catalytic Filter

  • Nishikawa, Harumitsu;Takahara, Yasumitsu;Takagi, Osamu;Tsuneyoshi, Koji;Kato, Katsuyoshi;Ihara, Tadayoshi;Wakai, Kazunori
    • Asian Journal of Atmospheric Environment
    • /
    • v.2 no.2
    • /
    • pp.75-80
    • /
    • 2008
  • A new-type apparatus decomposing volatile organic compounds (VOCs) using a combination system of an electrical exothermic SiC honeycomb and a catalytic filter was developed. This linear combination system is very useful to the catalytic decomposition of VOCs, because the gas involving VOCs is well heated in the SiC honeycomb and then flows into the catalytic filter. In the proposed apparatus, the outlet gas temperatures of SiC honeycomb maintained at ca. $300^{\circ}C$ after 5 min from the starting of applying electric current, and sufficient for the catalytic degradation of VOC components, i.e. toluene, isopropanol, methyl ethyl ketone and ethyl acetate. The average decomposition rate of total VOCs exhausted from a printing factory was 85% using pt catalyst at SV=19,000 in this system.

Infiltration characteristic of modified slurry and support efficiency of filter cake in silty sand strata

  • Sai Zhang;Jianwen Ding;Ning Jiao;Shuai Sun;Jinyu Liu
    • Geomechanics and Engineering
    • /
    • v.34 no.2
    • /
    • pp.125-138
    • /
    • 2023
  • To improve the understanding of infiltration characteristic of modified slurry and the support efficiency of filter cake in silty sand strata, the slurry infiltration (SI) and filter cake formation (FCF) were investigated in a laboratory apparatus. The water discharge and the excess pore pressure at different depths of silty sand strata were measured during SI. The relationship between permeability coefficient/thickness ratio of filter cake (kc/ΔL) and effective slurry pressure conversion rate of filter cake (η) were analyzed. Moreover, the SI and FCF process as well as the modification mechanism of CMC (carboxymethyl cellulose) were clarified. The experimental results indicate the formation of only external filter cake in the silty sand strata. The slurry particles obtain thicker water membrane after being modified by CMC, which blocks partial water path in filter cake and decreases the water discharge significantly. The silty sand excavated from tunnel face also contributes to the water discharge reduction. The kc of the external filter cake ranges from 3.83×10-8 cm/s to 7.44×10-8 cm/s. The η of the external filter cake is over 96%, which decreases with increasing kc/ΔL. A silty sand content within 10% is suggested during construction to ensure the uniformity of the filter cake.

Fabrication and Properties of SiC Candle Filter by Vacuum Extrusion and Ramming Process (II) (진공 압출성형 및 래밍성형 공정에 의한 탄화규소 캔들 필터 제조 및 특성 (II))

  • Han, In-Sub;Seo, Doo-Won;Kim, Se-Young;Hong, Ki-Seog;Woo, Sang-Kuk;Kim, Young-Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.515-523
    • /
    • 2010
  • Porous SiC candle filter preforms were fabricated by extrusion and ramming process. To fabricate SiC candle filter preform, commercially available F180 mesh ($85\;{\mu}m$) $\alpha$-SiC powder and $44\;{\mu}m$ mullite, $CaCO_3$ powder were used as the starting materials. The candle type preforms were fabricated by vacuum extrusion and ramming process, and sintered at $1400^{\circ}C$ 2 h in air atmosphere. Corrosion test of the sintered candle filter specimens as forming method was performed at $600^{\circ}C$ for 2,400 h in simulated IGCC syngas atmosphere. The effect of forming method on mechanical properties, pore distribution, microstructure and crystalline phase was investigated.

Fabrication of Porous Reaction Bonded Silicon Carbide with Multi-Layered Pore Structures (다층 기공구조를 갖는 다공성 반응소결 탄화규소 다공체 제조)

  • Cho, Gyoung-Sun;Kim, Gyu-Mi;Park, Sang-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.5
    • /
    • pp.534-539
    • /
    • 2009
  • Reaction Bonded Silicon Carbide(RBSC) has been used for engineering ceramics due to low-temperature fabrication and near-net shape products with excellent structural properties such as thermal shock resistance, corrosion resistance and mechanical strength. Recently, attempts have been made to develop hot gas filter with gradient pore structure by RBSC to overcome weakness of commercial clay-bonded SiC filter such as low fracture toughness and low reliability. In this study a fabrication process of porous RBSC with multi-layer pore structure with gradient pore size was developed. The support layer of the RBSC with multi-layer pore structure was fabricated by conventional Si infiltration process. The intermediate and filter layers consisted of phenolic resin and fine SiC powder were prepared by dip-coating of the support RBSC in slurry of SiC and phenol resin. The temperature of $1550^{\circ}C$ to make Si left in RBSC support layer infiltrate into dip-coated layer to produce SiC by reacting with pyro-carbon from phenol resin.

New Technology with Porous Materials: Progress in the Development of the Diesel Vehicle Business

  • Ohno, Kazushige
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.9
    • /
    • pp.497-506
    • /
    • 2008
  • The long time of twenty years has passed since Diesel Particulate Filter (DPF) was proposed before the practical use. The main factors that DPF has been put to practical use in this time, are the same time proposal of the evaluation method of SiC porous materials linked to he performance on the vehicle, and that the nature of thermal shock required for the soot regeneration (combustion of soot) in the DPF is different from the conventional requirement for the rather rapid thermal shock. For the requirements, these includ demonstrating utmost the characteristic of SiC's high thermal conductivity, and overcoming the difficulty of thermal expansion of SiC-DPF by dividing the filter into segments binding with the cement of lower Young's modulus, and the innovation of technology around the diesel exhaust system such as Common-Rail system. As the results of these, the cumulative shipments of SiC-DPF have reached about 5 million, and it goes at no claim in the market.

A Study on the Design and Characteristics of thin-film L-C Band Pass Filter

  • Kim In-Sung;Song Jae-Sung;Min Bok-Ki;Lee Won-Jae;Muller Alexandru
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.4
    • /
    • pp.176-179
    • /
    • 2005
  • The increasing demand for high density packaging technologies and the evolution to mixed digital and analogue devices has been the con-set of increasing research in thin film multi-layer technologies such as the passive components integration technology. In this paper, Cu and TaO thin film with RF sputtering was deposited for spiral inductor and MOM capacitor on the $SiO_2$/Si(100) substrate. MOM capacitor and spiral inductor were fabricated for L-C band pass filter by sputtering and lift-off. We are analyzed and designed thin films L-C passive components for band pass filter at 900 MHz and 1.8 GHz, important devices for mobile communication system. Based on the high-Q values of passive components, MOM capacitor and spiral inductors for L-C band pass filter, a low insertion loss of L-C passive components can be realized with a minimized chip area. The insertion loss was 3 dB for a 1.8 GHz filter, and 5 dB for a 900 MHz filter. This paper also discusses a analysis and practical design to thin-film L-C band pass filter.