• Title/Summary/Keyword: SiC based Sludge

Search Result 3, Processing Time 0.022 seconds

Study on the Producing SiC Based Briquette for Raised Temperature of Molten Steel using Si Sludge Induced in the Process of Si Fabrication (실리콘 제조 공정에서 발생한 실리콘 슬러지를 활용한 용강 SiC계 승온제 제조 연구)

  • Lee, Chang-Hyun;Lee, Sang-Ro;Park, Man-Bok;Koo, Yeon-Soo;Lee, Man-Seung
    • Resources Recycling
    • /
    • v.26 no.6
    • /
    • pp.45-49
    • /
    • 2017
  • Most Waste slurry is produced in the process of silicon manufacturing for semiconductor industry, containing silicon (Si) and silicon carbide (SiC). Waste slurry is simply stored with solidifying by cement or buried. On the other hand, it was suggested in this study that the waste slurry should be used for heating source as supplementary material in steel making process. The waste slurry was refined and pulverized, which was recycled into SiC-based sludge briquette. Chemical composition for SiC-based sludge briquette was analyzed and the feature of heating source was observed in accordance with the injection time and input amount. As a result, SiC-based sludge briquette in terms of low cost and high efficiency had an effect on increasing liquid steel temperature in steel making plants.

Use of Stone Powder Sludge in Fly Ash-Based Geopolymer

  • Choi, Se-Jin
    • Architectural research
    • /
    • v.12 no.1
    • /
    • pp.49-55
    • /
    • 2010
  • Stone powder sludge is a by-product of the manufacturing process of crushed sand. Most of it is dumped with soil in landfills, and the disposal of stone powder sludge causes a major environmental problem. This paper investigates the applicability of stone powder sludge in fly ashbased geopolymer. For this, stone powder sludge was used to replace fly ash at a replacement ratio of 50% and 100% by weight. The compressive strength of the samples was measured and scanning electron microscopy/ energy dispersive spectroscopy (SEM/EDS) analysis and X-ray diffraction (XRD) were performed. The test results indicated that the optimum level of the alkali activator ratio ($Na_2SiO_3$/NaOH) for fly ash-based geopolymer using stone powder sludge was 1.5. The strength development is closely related to the NaOH solution concentration. In addition, the compressive strength of the sample cured at $25^{\circ}C$ was significantly improved between 7 days and 28 days, even though the strength of the sample showed the lowest value at 7 days. Microscopy results indicated that a higher proportion of unreacted fly ash spheres remained in the sample with 5M NaOH, and some pores on the surface of the sample were observed.

Fabrication of lightweight geopolymer based on the IGCC slag (IGCC 용융 슬래그를 이용한 경량 지오폴리머 제조)

  • Park, Soo-bin;Kim, Kang-duk;Kang, Seung-gu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.6
    • /
    • pp.319-326
    • /
    • 2017
  • In this study, a lightweight geopolymer was prepared using by slag discharged from IGCC (Integrated Gasification Combined Cycle) power plant and its physical properties, the density and compressive strength, were analyzed as a function of the concentration of alkali activators, W/S ratio and aging times. Also the possibility of applying it to lightweight materials by adding Si sludge as a foaming agent to the geopolymerg was investigated. In particular, a complex composition of alkali activator and a pre-curing process were applied to improve the strength properties of lightweight geopolymers. While the compressive strength of the lightweight geopolymer using a single activator was 9.5 MPa, the specimen made with a complex composition of alkali activator had compressive strength of 2~5 times higher. In addition, the lightweight geopolymer with pre-curing process showed a compressive strength value of 18~48 % higher than that of specimen made with no precuring process. In this study, by using a complex activator and a pre-curing process. the maximum compressive strength of lightweight geopolymer was obtained as 40 MPa (The specimen was aged for 3 days and had density of $1.83g/cm^3$), which is comparable to cement concrete. By analyzing the crystal phase and microstructure of geopolymers obtained in this study using by XRD and SEM, respectively, it was confirmed that the flower-bud-like zeolite crystal was homogeneously distributed on the surface of the C-S-H gel (sodium silicate hydrate gel) in the geopolymer.