• 제목/요약/키워드: SiC Transistor

검색결과 214건 처리시간 0.026초

자연 산화막과 엑시머 레이저를 이용한 Poly-Si/a-Si 이중 박막 다결정 실리콘 박막 트랜지스터 (Poly-Si Thin Film Transistor with poly-Si/a-Si Double Active Layer Fabricated by Employing Native Oxide and Excimer Laser Annealing)

  • 박기찬;박진우;정상훈;한민구
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제49권1호
    • /
    • pp.24-29
    • /
    • 2000
  • We propose a simple method to control the crystallization depth of amorphous silicon (a-Si) deposited by PECVD or LPCVD during the excimer laser annealing (ELA). Employing the new method, we have formed poly-Si/a-Si double film and fabricated a new poly-Si TFT with vertical a-Si offsets between the poly-Si channel and the source/drain of TFT without any additional photo-lithography process. The maximum leakage current of the new poly-Si TFT decreased about 80% due to the highly resistive vertical a-Si offsets which reduce the peak electric field in drain depletion region and suppress electron-hole pair generation. In ON state, current flows spreading down through broad a-Si cross-section in the vertical a-Si offsets and the current density in the drain depletion region where large electric field is applied is reduced. The stability of poly-Si TFT has been improved noticeably by suppressing trap state generation in drain region which is caused by high current density and large electric field. For example, ON current of the new TFT decreased only 7% at a stress condition where ON current of conventional TFT decreased 89%.

  • PDF

다결정 실리콘 박막 트랜지스터의 수소화에 따른 전기적 스트레스의 영향 (Effects of Electrical Stress on Polysilicon TFTs with Hydrogen Passivation)

  • 황성수;황한욱;김용상
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제48권5호
    • /
    • pp.367-372
    • /
    • 1999
  • We have investigated the effects of electrical stress on poly-Si TFTs with different hydrogen passivation conditions. The amounts of threshod voltage shift of hydrogen passivated poly-Si TFTs are much larger than those of as-fabricated devices both under the gate only and the gate and drain bias stressing. Also, we have quantitatively analyzed the degradation phenomena by analytical method. We have suggested that the electron trapping in the gate dielectric is the dominant degradation mechanism in only gate bias stressed poly-Si TFT while the creation of defects in the channel region and $poly-Si/SiO_2$ interface is prevalent in gate and drain bias stressed device.

  • PDF

NH3 Plasma Treatment를 사용한 고성능 TFT 제작 및 분석 (A Production and Analysis on High Quality of Thin Film Transistors Using NH3 Plasma Treatment)

  • 박희준;;이준신
    • 한국전기전자재료학회논문지
    • /
    • 제30권8호
    • /
    • pp.479-483
    • /
    • 2017
  • The effect of $NH_3$ plasma treatment on device characteristics was confirmed for an optimized thin film transistor of poly-Si formed by ELA. When C-V curve was checked for MIS (metal-insulator-silicon), Dit of $NH_3$ plasma treated and MIS was $2.7{\times}10^{10}cm^{-2}eV^{-1}$. Also in the TFT device case, it was decreased to the sub-threshold slope of 0.5 V/decade, 1.9 V of threshold voltage and improved in $26cm^2V^{-1}S^{-1}$ of mobility. Si-N and Si-H bonding reduced dangling bonding to each interface. When gate bias stress was applied, the threshold voltage's shift value of $NH_3$ plasma treated device was 0.58 V for 1,000s, 1.14 V for 3,600s, 1.12 V for 7,200s. As we observe from this quality, electrical stability was also improved and $NH_3$ plasma treatment was considered effective for passivation.

Zn 타겟을 이용한 ZnO 박막트랜지스터의 스퍼터링 성장 (Sputtering Growth of ZnO Thin-Film Transistor Using Zn Target)

  • 우맹;조중열
    • 반도체디스플레이기술학회지
    • /
    • 제13권3호
    • /
    • pp.35-38
    • /
    • 2014
  • Flat panel displays fabricated on glass substrate use amorphous Si for data processing circuit. Recent progress in display technology requires a new material to replace the amorphous Si, and ZnO is a good candidate. ZnO is a wide bandgap (3.3 eV) semiconductor with high mobility and good optical transparency. ZnO is usually grown by sputtering using ZnO ceramic target. However, ceramic target is more expensive than metal target, and making large area target is very difficult. In this work we studied characteristics of ZnO thin-film transistor grown by rf sputtering using Zn metal target and $CO_2$. ZnO film was grown at $450^{\circ}C$ substrate temperature, with -70 V substrate bias voltage applied. By using these methods, our ZnO TFT showed $5.2cm^2/Vsec$ mobility, $3{\times}10^6$ on-off ratio, and -7 V threshold voltage.

SiGe HBT 제작을 위한 실리콘 게르마늄 단결정 박막의 RBS 분석 (RBS Analysis on the Si0.9Ge0.1 Epitaxial Layer for the fabrication of SiGe HBT)

  • 한태현;안호명;서광열
    • 한국전기전자재료학회논문지
    • /
    • 제17권9호
    • /
    • pp.916-923
    • /
    • 2004
  • In this paper, the strained Si$_{0.9}$Ge$_{0.1}$ epitaxial layers grown by a reduced pressure chemical vapor deposition (RPCVD) on Si (100) were characterized by Rutherford backscattering spectrometery (RBS) for the fabrication of an SiGe heterojunction bipolar transistor(HBT). RBS spectra of the ${Si}_0.9{Ge}_0.1$epitaxial layers grown on the Si substrates which were implanted with the phosphorus (P) ion and annealed at a temperature between $850^{\circ}C$ - $1000^{\circ}C$ for 30min were analyzed to investigate the post thermal annealing effect on the grown${Si}_0.9{Ge}_0.1$epitaxial layer quality. Although a damage of the substrates by P ion-implantation might be cause of the increase of RBS yield ratios, but any defects such as dislocation or stacking fault in the grown ${Si}_0.9{Ge}_0.1$ epitaxial layer were not found in transmission electron microscope (TEM) photographs. The post high temperature rapid thermal annealing (RTA) effects on the crystalline quality of the ${Si}_0.9{Ge}_0.1$ epitaxial layers were also analyzed by RBS. The changes in the RBS yield ratios were negligible for RTA a temperature between $900^{\circ}C$ - $1000^{\circ}C$for 20 sec, or $950^{\circ}C$for 20 sec - 60 sec. A SiGe HBT array shows a good Gummel characteristics with post RTA at $950^{\circ}C$ for 20 sec.sec.sec.

SiC MOSFET기반 200kW급 전기차 구동용 모터드라이버 개발 (Development of 200kW class electric vehicle traction motor driver based on SiC MOSFET)

  • 김연우;김세환;김민재;이의형;이성원
    • 전기전자학회논문지
    • /
    • 제26권4호
    • /
    • pp.671-680
    • /
    • 2022
  • 본 논문에서는 현재 출시되어 있는 전기차의 구동모터 사양을 대부분 포괄하는 200kW급 구동용 모터드라이버를 개발하였다. 고효율ㆍ고전력밀도를 달성하기 위해 기존 전력반도체(Insulated-gate bipolar transistor, IGBT)대신에 차세대 전력반도체(Silicon carbide, SiC)를 적용하였으며 SiC를 최적사용하기 위해 하드웨어에 대한 분석을 통해, 예상되는 효율 및 방열특성을 구하여 최적 설계를 하였다. 전기차 구동모터에 대부분 활용되는 매입형 영구자석 동기모터(Interior permanent-magnet synchronous machine, IPMSM)를 위한 벡터 제어 알고리즘을 DSP를 활용하여 구현하였다. 본 논문에서는 SiC기반 전기차 구동용 모터드라이버 시작품을 설계ㆍ제작하였으며 실험을 통해 성능을 검증하였다.

Schottky Barrier Tunnel Transistor with PtSi Source/Drain on p-type Silicon On Insulator substrate

  • 오준석;조원주
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.146-146
    • /
    • 2010
  • 일반적인 MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor)은 소스와 드레인의 형성을 위해서 불순물을 주입하고 고온의 열처리 과정을 거치게 된다. 이러한 고온의 열처리 과정 때문에 녹는점이 낮은 메탈게이트와 게이트 절연막으로의 high-k 물질의 사용에 제한을 받게된다. 이와 같은 문제점을 보완하기 위해서 소스와 드레인 영역에 불순물 주입공정 대신에 금속접합을 이용한 Schottky Barrier Tunnel Transistor (SBTT)가 제안되었다. SBTT는 $500^{\circ}C$ 이하의 저온에서 불순물 도핑없이 소스와 드레인의 형성이 가능하며 실리콘에 비해서 수십~수백배 낮은 면저항을 가지며, 단채널 효과를 효율적으로 제어할 수 있는 장점이 있다. 또한 고온공정에 치명적인 단점을 가지고 있는 high-k 물질의 적용 또한 가능케한다. 본 연구에서는 p-type SOI (Silicon-On-Insulator) 기판을 이용하여 Pt-silicide 소스와 드레인을 형성하고 전기적인 특성을 분석하였다. 또한 본 연구에서는 기존의 sidewall을 사용하지 않는 새로운 구조를 적용하여 메탈게이트의 사용을 최적화하였고 게이트 절연막으로써 실리콘 옥사이드를 스퍼터링을 이용하여 증착하였기 때문에 저온공정을 성공적으로 수행할 수 있었다. 이러한 게이트 절연막은 열적으로 형성시키지 않고도 70 mv/dec 대의 우수한 subthreshold swing 특성을 보이는 것을 확인하였고, $10^8$정도의 높은 on/off current ratio를 갖는 것을 확인하였다.

  • PDF

Implementation and Evaluation of Interleaved Boundary Conduction Mode Boost PFC Converter with Wide Band-Gap Switching Devices

  • Jang, Jinhaeng;Pidaparthy, Syam Kumar;Choi, Byungcho
    • Journal of Power Electronics
    • /
    • 제18권4호
    • /
    • pp.985-996
    • /
    • 2018
  • The implementation and performance evaluation of an interleaved boundary conduction mode (BCM) boost power factor correction (PFC) converter is presented in this paper by employing three wide band-gap switching devices: a super junction silicon (Si) MOSFET, a silicon carbide (SiC) MOSFET and a gallium nitride (GaN) high electron mobility transistor (HEMT). The practical considerations for adopting wide band-gap switching devices to BCM boost PFC converters are also addressed. These considerations include the gate drive circuit design and the PCB layout technique for the reliable and efficient operation of a GaN HEMT. In this paper it will be shown that the GaN HEMT exhibits the superior switching characteristics and pronounces its merits at high-frequency operations. The efficiency improvement with the GaN HEMT and its application potentials for high power density/low profile BCM boost PFC converters are demonstrated.

ON/OFF 전류비를 향상시킨 새로운 bottom-gate 구조의 다결정 실리콘 박막 트랜지스터 (A Novel Bottom-Gate Poly-Si Thin Film Transistors with High ON/OFF Current Ratio)

  • 전재홍;최권영;박기찬;한민구
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제48권5호
    • /
    • pp.315-318
    • /
    • 1999
  • We have proposed and fabricated the new bottom-gated polycrystalline silicon (poly-Si) thin film transistor (TFT) with a partial amorphous-Si region by employing the selective laser annealing. The channel layer of the proposed TFTs is composed of poly-Si region in the center and a-Si region in the edge. The TEM image shows that the local a-Si region is successfully fabricated by the effective cut out of the incident laser light in the upper a-Si layer. Our experimental results show that the ON/OFF current ratio is increased significantly by more than three orders in the new poly-Si TFT compared with conventional poly-Si TFT. The leakage current is decreased significantly due to the highly resistive a-Si re TFTs while the ON-series resistance of the local a-Si is reduced significantly due to the considerable inducement of electron carriers by the positive gate bias, so that the ON-current is not decreased much.

  • PDF

이중 절연막 구조를 가전 플라스틱 유기 박막트랜지스터의 전기적 특성 (Electrical Characteristics of Organic Thin Film Transistors with Dual Layer Insulator on Plastic Substrates)

  • 최승진;이인규;박성규;김원근;문대규
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집
    • /
    • pp.194-197
    • /
    • 2002
  • Applying dual layer insulator on plastic substrates improved electrical characteristics of organic thin film transistor(TFT). A high-quality silicon dioxide(SiO$_2$) suitable for a insulator was deposited on plastic substrates by e-beam evaporation at 110$^{\circ}C$. The insulator film which was treated by N$_2$ annealing at 150$^{\circ}C$ showed excellent I-V, C-V characteristics. The dual layer insulator structure of polyimide-SiO$_2$ improved the roughness of SiO$_2$ surface and showed very low leakage current. In addition, the flat band voltage has been reduced from -2.5V to about 0.5V.

  • PDF