• Title/Summary/Keyword: SiB2-Paddy

Search Result 16, Processing Time 0.023 seconds

Application of Simple Biosphere Model (SiB2) to Ecological Research (Simple Biosphere Model 2 (SiB2)의 생태학적 응용)

  • 김원식;조재일
    • The Korean Journal of Ecology
    • /
    • v.27 no.4
    • /
    • pp.245-256
    • /
    • 2004
  • The simple biosphere model 2 (SiB2), which is one of the land surface models, simulates the exchange of momentum, energy and mass such as water vapor and carbon dioxide between atmosphere and biosphere, and includes the biochemical sub-model for representation of stomatal conductance and photosynthetical activities. Throughout the SiB2 simulation, the significant information not only to understand of water and carbon budget but also to make an analysis of interaction such as feed-back and-forward between environment and vegetation is given. Using revised SiB2-Paddy, one sample study which is the evaluation of the runoff in Chaophraya river basin according to land use/cover change is presented in this review. Hence, SiB2 is available in order to ecological studied, if revised SiB2 for realistic simulation about soil respiration, computing leaf area index, vegetation competition and soil moisture is improved.

Effects of Controlled Drainage and Slow-release Fertilizer on Nutrient Pollutant Loads from Paddy Fields (물꼬관리 및 완효성 비료 시비가 포장단위 논에서의 영양물질 배출부하량에 미치는 영향)

  • Kim, Kyeung;Kang, Moon Seong;Song, Inhong;Song, Jung-Hun;Park, Jihoon;Jun, Sang Min;Jang, Jeong Ryeol;Kim, Jin Soo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • The objective of this study was to investigate the effects of farming methods on mass balance from paddy rice. The experiment fields were established at Chunpo-myeon, Iksan-si in the Saemangeum watershed. Experiment was performed during the growing season to assess water and mass balances of the study field in 2013. The three different farming practices were applied: conventional (TR-A), drainage outlet heighten (TR-B) and slow release fertilizer use (TR-C). Drainage amount from TR-B was reduced by 28.5 % compared to the TR-A, while the amount from TR-C was similar to that of TR-A. Overall, nutrient concentration of paddy water were similar among the treatments except for T-P. Mean T-P concentration from TR-C was lower than that from TR-A (p-value<0.05). As the results of mass balance, TR-B appeared to reduce nutrient surface loss, substantially by 30.9 % and 40.8 % for T-N and T-P an compared to TR-A. TR-C treatment also demonstrated nutrient load reduction by 38.2 % and 40.1 % for T-N and T-P. The study results showed that water and fertilizer treatments are effective in surface load reduction respectively from paddy fields, and, long-term monitoring and evaluation is needed to confirm the reduction.

Studies on the Estimation of K2O Requirement for rice through the Chemical Test Data of Paddy Top Soil (화학분석(化學分析)을 통(通)한 수도(水稻)의 가리적량(加里適量) 추정(推定)에 관한 연구(硏究))

  • Kim, Moon Kyu
    • Korean Journal of Agricultural Science
    • /
    • v.2 no.1
    • /
    • pp.61-100
    • /
    • 1975
  • This study has been made to find out the possibilty of successfully using the following $K_2O$ recommended equation $K_2O\;kg/10a=(Ko/\sqrt{Ca+Mg}-Ks/\sqrt{Ca+Mg})sqrt{Ca+Mg}.\;47.\;B\;D$. where $Ko/sqrt{Ca+Mg}=0.03518+0.0007658\;Sio_2/O.M$. $K_Ssqrt{Ca+Mg}$=Exchangeable K me/100g/$\sqrt{Total\;soluble(Ca+Mg)me/100g\;in\;Soil}$ B. D. =Bulk density of top soil, when the dose of Nitrogen for rice is estimated from the following equation: $N\;kg/10a=(4.2+0.096\;SiO_2/O.M).F$ where $F=0.907+0.263x-0.013x^2$ $SiO_2/O.M=(available\;SiO_2=ppm)/(organic\;matter\;%)$in soil For this. two field experiments. one in sandy and the other in clay paddy soil. have been conducted using 3 levels of wollastonite (0, 500, 100kg/10a) as main treatments; 3 levels of $K_2O$ application were used as sub-plots. These were as follows : (1) 8kg of $K_2O$/10a regardless of the K activity-$K/\sqrt{Ca+Mg}$; (2) kg of $K_2O$/10a estimated from the above equation. and (3) same as (2) above plus additional 30% of $K_2O$. The dose of N kg/ 10a was determined from the above equation based on the value of $SiO_2$/O.M. ratio in each treatment. There were three replications. The leading variety of rice in Chung Chong Nam Do area. Akibare (introduced from Japan) was used. The data obtained. through soil and plant analysis and growth and yield observations. have been throughly examined to attain the following summarized conclusions. 1. The nitrogen dose. estimated from the above equation. was in excess for optimum growth of the rice variety Akibare; indicating the necessity of modification onthe value of "F" or the constants in the equation. The concept of using $SiO_2$/O.M. in the equation was shown to be applicable. 2. The dose of potash. estimated from the respective equation given above. also was in excess of the rice requirements indicating the necessity of minor change in the estimation of $Ko/\sqrt{Ca+Mg}$ value and some great modification in the calculation of $Ks/\sqrt{Ca+Mg}$ value for the equation; however the concept of using $K/\sqrt{Ca+Mg}$ as a basis of $K_2O$ recommendation was shown to be quite reasonable. 3. It was found. from the correlation study using the data of paddy yield and amount of $K_2O$ absorbed by rice plants that the substitution of the value of $Ks/\sqrt{Ca+Mg}$ in the equation for the vaule $Ks/\sqrt{Ca+Mg}=0.037+0.78K\;me/100g$ soil was much more applicable than using the value calculated from the data of soil and wollastonite analysis.

  • PDF

A Study on the Requirement of Tractor Pulling Force of Slurry Manure Spreader for the Utilization in Paddy Field (벼수확 논에서 트랙터견인형 액비살포기의 소요견인력 측정에 관한 연구)

  • Oh, I.H.;Kim, K.D.
    • Journal of Animal Environmental Science
    • /
    • v.8 no.2
    • /
    • pp.99-106
    • /
    • 2002
  • This study was conducted to improve utilization efficiency of slurry and choose a suitable type of tractor power which can be attached by manure spreader in the paddy field. In the paddy field, the pulling force for the spreader was measured by using a measurement system installed between tractors with and without the spreader. The soil moisture contents at the 0${\sim}$10cm and 10${\sim}$20cm depth of test soil(SiCL) were 28.45% d.b. and 23.47% d.b., respectively in average while Cone Index at l0cm and 15cm depth were 14.5kPa and 16.2kPa, respectively. It was impossible to measure the soil moisture contents and Cone Index below 20cm depth of the soil because the hardness of the soil increased greatly. Thereafter, hard pan of the sampled soil was found at 15${\sim}$20cm depth. While the required power only for the dragged tractor was found to be 3.44kW in the test field, the required pulling powers of tractor considering the pumping were 8.48${\sim}$12.48kW, 12.19${\sim}$16.19kW, 16.96${\sim}$20.96kW, respectively for 2 tons, 3 tons, and 4 tons of tank capacity. As the tank capacity increased, the sinkage of soil were also increased to 7cm, l0cm, and 12cm, respectively for the tractors with 2 tons, 3 tons and 4 tons of tank capacity. Considering about 60% of pulling efficiency of tractor, a tractor which had lower than 25.74kW of pulling power was suitable to pull the spreader and spread the slurry simultaneously for manure spreader with 2 tons of tank capacity. 29.42kW${\sim}$36.78kW of pulling power was found to be optimum for the tractor with 3 tons of tank capacity while over 40.45kW for 4 tons of tank capacity.

  • PDF

Evaluation of Basic Oxygen Furnace Slag as Soil Conditioner in the Rice Paddy Field (논토양 벼재배에서 제강슬래그의 토양개량제로서의 시용 효과)

  • Lim, June-Taeg;Lee, Yeen;Park, In-Jin;Lee, Choong-Il;Hyun, Kyu-Hawn;Kwon, Byung-Sun;Kim, Hak-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.3
    • /
    • pp.295-303
    • /
    • 1999
  • An experiment was conducted to evaluate the possibility of using basic oxygen furnace (BOF) slag as a soil conditioner in rice paddy field. In 1997, rice (Oryza sativa B. cv. Dongjinbyeo) crop was cultivated under different application rates of BOF slag at three different places, Inandong Sunchon city, Youjunglee Bosung province, and Nampyung Najoo city. In each paddy field, five treatments, four application rate of BOF slag (0, 4, 8, $12Mg\;ha^{-1}$) and one application rate of lime ($2Mg\;ha^{-1}$) were tried with three replications. Plant height, number of tillers per hill, leaf area per hill, leaf dry weight, calm dry weight or shoot dry weight per hill were measured five times at the interval of seven days. Chemical contents of rice plants and soil were also measured at the same sampling date Yield were estimated by harvesting $6.6m^2$ per experimental unit and yield components were measured by sampling 10 plants per experimental unit at the harvest date. Application of BOF slag hardly affected contents of soil organic matter, available phosphate and potassium in soil. Soil pH and contents of Ca, Mg, Fe and $SiO_2$ enhanced as BOF slag rate increased. Enhancement of soil pH by ROF slag treatment appeared to be closely related with increase in soil Ca content. Application tate of $2Mg\;ha^{-1}$ of lime showed almost the same effect, in increase of soil Ca content as application rate of $4{\sim}8Mg\;ha^{-1}$ of BOF slag, Fe content in soil decreased sharply as time passed after slag treatment and stabilized more or less at the later sampling date. Contents of inorganic matter in plant such as total nitrogen, phosphate, potassium and Mg were not affected by BOF slag treatment. However, contents of Ca, Fe, and $SiO_2$ in plants increased as slag rate became higher. The growth of rice plants with BOF slag treatment was more or less slower but continued persistently up to the later growth stage, so that growth of plants with BOF slag treatment was almost the same nr even greater than that of control or lime treatment. However, BOF slag rate of $12Mg\;ha^{-1}$ seemed to be too high because all the measurements of plant, growth at this rate showed lower values than those of other treatments at all the sampling dates. Treatments of BOF slag $4Mg\;ha^{-1}$ or $8Mg\;ha^{-1}$ showed higher rough rice yield than other treatments, so that the optimum BOF slag ratein rice paddy field seemed to be in the rage of $4{\sim}8Mg\;ha^{-1}$.

  • PDF

Prediction of Land-cover Change Based on Climate Change Scenarios and Regional Characteristics using Cluster Analysis (기후변화 시나리오에 따른 미래 토지피복변화 예측 및 군집분석을 이용한 지역 특성 분석)

  • Oh, Yun-Gyeong;Choi, Jin-Yong;Yoo, Seung-Hwan;Lee, Sang-Hyun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.31-41
    • /
    • 2011
  • This study was conducted to predict future land-cover changes under climate change scenarios and to cluster analysis of regional land-cover characteristics. To simulate the future land-cover according to climate change scenarios - A1B, A2, and B1 of the Special Report on Emissions Scenarios (SRES), Dyna-CLUE (Conversion of Land Use Change and its Effects) was applied for modeling of competition among land-use types in relation with socioeconomic and biophysical driving factors. Gyeonggi-do were selected as study areas. The simulation results from 2010 to 2040 suggested future land-cover changes under the scenario conditions. All scenarios resulted in a gradual decrease in paddy area, while upland area continuously increased. A1B scenario showed the highest increase in built-up area, but all scenarios showed only slight changes in forest area. As a result of cluster analysis with the land-cover component scores, 31 si/gun in Gyeonggi-do were classified into three clusters. This approach is expected to be useful for evaluating and simulating land-use changes in relation to development constraints and scenarios. The results could be used as fundamental basis for providing policy direction by considering regional land-cover characteristics.

Characterization and Methanol Biosynthesis of a Methane-Oxidizing Bacterium, Methylomonas sp. SM4, Isolated from Rice Paddy Field Soil (논에서 분리한 메탄산화세균 Methylomonas sp. SM4의 특성과 메탄올 생합성)

  • Park, Sung Min;Madhavaraj, Lavanya;Kim, Si Wouk
    • KSBB Journal
    • /
    • v.32 no.2
    • /
    • pp.124-132
    • /
    • 2017
  • A methane-oxidizing bacterium was isolated from rice paddy field soil around Jeollanam-do province, Korea, and characterized. The isolate was gram-negative, orange pigmented and short rod ($1.1-1.2{\times}1.6-1.9{\mu}m$). It was catalase and urease-negative but oxidase-positive. The strain utilized methane and methanol as sole carbon and energy sources. It had an ability to grow with an optimum pH 7.0 and an optimum growth temperature $30^{\circ}C$. The strain was resistant to antibiotic polymyxin B but sensitive to streptomycin, kanamycin, ampicillin, chloramphenicol and rifampicin. The isolate required copper for their growth with concentration range of $2-25{\mu}M$, with an optimum of $10{\mu}M$. Under optimal culture condition, specific cell growth rate and generation time were found to be $0.046hr^{-1}$ and 15.13 hr, respectively. Phylogenetic analysis based on 16S rDNA sequences indicated that the strain formed a tight phylogenetic lineage with Methylomonas koyamae with a value of 99.4% gene sequence homology. So, we named the isolate as Methylomonas sp. SM4. 8.6 mM methanol was accumulated in the reaction mixture containing 70 mM sodium formate and 40 mM $MgCl_2$ (MDH inhibitor) under atmosphere of methane:air (40:60) mixture for 24 hr at $30^{\circ}C$.

Studies on the Nitrogen Effect in Red Discoloration of Rice IR 667 (수도 IR 667의 적고현상에 미치는 질소의 영향에 관한 연구)

  • 곽병화
    • Journal of Plant Biology
    • /
    • v.14 no.4
    • /
    • pp.5-13
    • /
    • 1971
  • Pot and paddy field tests were conducted to study red discoloration of rice var. IR 667 leaves with reference to the leading Korean native variety Jinhung and Paldal, with the following results: 1. Minor elements such as Mn, Fe, B, Al, Ca and Si had no influence on the discoloration, but a supply of various soluble nitrogen compounds completely restricted it. The more prosperous the growth of IR 667 with nitrogen, the more severe the discoloration appears when nitrogen absorptin becomes limited. 2. Chlorotic pigments extracted from both IR 667 and Jinhung were compared spectrophotometrically, and found to have different spectral peaks. IR 667 had peak closer to red than Jinhung, indicating the characteristic of the variety. IR 667 was observed to be more sensitive to nitrogen deficiency than Jinhung or the other japonica variety. 3. It was concluded that all the factors limiting nitrogen supply for IR 667 growth, such as low nitrogen application, restriction of root respiration (low temperature, poor drainage, toxic gases or substances in the root zone, etc.) and pest injuries, would result in the appearance of the so-called red discoloration, because of the reduction in nitrogen uptake. Since, the discoloration of IR 667 is varietal characteristic when grown in Korea, control of it may be beneficial cultural practice in increasing grain yield, although the increased succeptibility to pests and a drop in the rate of maturity due to relatively high nitrogen level in the leaves may result in an unexpected drop in yield. It is anticipated that further exploration conducted from practical point of view will establish the relatioknships between the extent of red discoloration, nitrogen availability and grain yield in IR 667.

  • PDF

Studies on the Rice Yield Decreased by Ground Water Irrigation and Its Preventive Methods (지하수 관개에 의한 수도의 멸준양상과 그 방지책에 관한 연구)

  • 한욱동
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.16 no.1
    • /
    • pp.3225-3262
    • /
    • 1974
  • The purposes of this thesis are to clarify experimentally the variation of ground water temperature in tube wells during the irrigation period of paddy rice, and the effect of ground water irrigation on the growth, grain yield and yield components of the rice plant, and, furthermore, when and why the plant is most liable to be damaged by ground water, and also to find out the effective ground water irrigation methods. The results obtained in this experiment are as follows; 1. The temperature of ground water in tube wells varies according to the location, year, and the depth of the well. The average temperatures of ground water in a tubewells, 6.3m, 8.0m deep are $14.5^{\circ}C$ and $13.1^{\circ}C$, respercively, during the irrigation period of paddy rice (From the middle of June to the end of September). In the former the temperature rises continuously from $12.3^{\circ}C$ to 16.4$^{\circ}C$ and in the latter from $12.4^{\circ}C$ to $13.8^{\circ}C$ during the same period. These temperatures are approximately the same value as the estimated temperatures. The temperature difference between the ground water and the surface water is approximately $11^{\circ}C$. 2. The results obtained from the analysis of the water quality of the "Seoho" reservoir and that of water from the tube well show that the pH values of the ground water and the surface water are 6.35 and 6.00, respectively, and inorganic components such as N, PO4, Na, Cl, SiO2 and Ca are contained more in the ground water than in the surface water while K, SO4, Fe and Mg are contained less in the ground water. 3. The response of growth, yield and yield components of paddy rice to ground water irrigation are as follows; (l) Using ground water irrigation during the watered rice nursery period(seeding date: 30 April, 1970), the chracteristics of a young rice plant, such as plant height, number of leaves, and number of tillers are inferior to those of young rice plants irrigated with surface water during the same period. (2) In cases where ground water and surface water are supplied separately by the gravity flow method, it is found that ground water irrigation to the rice plant delays the stage at which there is a maximum increase in the number of tillers by 6 days. (3) At the tillering stage of rice plant just after transplanting, the effect of ground water irrigation on the increase in the number of tillers is better, compared with the method of supplying surface water throughout the whole irrigation period. Conversely, the number of tillers is decreased by ground water irrigation at the reproductive stage. Plant height is extremely restrained by ground water irrigation. (4) Heading date is clearly delayed by the ground water irrigation when it is practised during the growth stages or at the reproductive stage only. (5) The heading date of rice plants is slightly delayed by irrigation with the gravity flow method as compared with the standing water method. (6) The response of yield and of yield components of rice to ground water irrigation are as follows: \circled1 When ground water irrigation is practised during the growth stages and the reproductive stage, the culm length of the rice plant is reduced by 11 percent and 8 percent, respectively, when compared with the surface water irrigation used throughout all the growth stages. \circled2 Panicle length is found to be the longest on the test plot in which ground water irrigation is practised at the tillering stage. A similar tendency as that seen in the culm length is observed on other test plots. \circled3 The number of panicles is found to be the least on the plot in which ground water irrigation is practised by the gravity flow method throughout all the growth stages of the rice plant. No significant difference is found between the other plots. \circled4 The number of spikelets per panicle at the various stages of rice growth at which_ surface or ground water is supplied by gravity flow method are as follows; surface water at all growth stages‥‥‥‥‥ 98.5. Ground water at all growth stages‥‥‥‥‥‥62.2 Ground water at the tillering stage‥‥‥‥‥ 82.6. Ground water at the reproductive stage ‥‥‥‥‥ 74.1. \circled5 Ripening percentage is about 70 percent on the test plot in which ground water irrigation is practised during all the growth stages and at the tillering stage only. However, when ground water irrigation is practised, at the reproductive stage, the ripening percentage is reduced to 50 percent. This means that 20 percent reduction in the ripening percentage by using ground water irrigation at the reproductive stage. \circled6 The weight of 1,000 kernels is found to show a similar tendency as in the case of ripening percentage i. e. the ground water irrigation during all the growth stages and at the reproductive stage results in a decreased weight of the 1,000 kernels. \circled7 The yield of brown rice from the various treatments are as follows; Gravity flow; Surface water at all growth stages‥‥‥‥‥‥514kg/10a. Ground water at all growth stages‥‥‥‥‥‥428kg/10a. Ground water at the reproductive stage‥‥‥‥‥‥430kg/10a. Standing water; Surface water at all growh stages‥‥‥‥‥‥556kg/10a. Ground water at all growth stages‥‥‥‥‥‥441kg/10a. Ground water at the reproductive stage‥‥‥‥‥‥450kg/10a. The above figures show that ground water irrigation by the gravity flow and by the standing water method during all the growth stages resulted in an 18 percent and a 21 percent decrease in the yield of brown rice, respectively, when compared with surface water irrigation. Also ground water irrigation by gravity flow and by standing water resulted in respective decreases in yield of 16 percent and 19 percent, compared with the surface irrigation method. 4. Results obtained from the experiments on the improvement of ground water irrigation efficiency to paddy rice are as follows; (1) When the standing water irrigation with surface water is practised, the daily average water temperature in a paddy field is 25.2$^{\circ}C$, but, when the gravity flow method is practised with the same irrigation water, the daily average water temperature is 24.5$^{\circ}C$. This means that the former is 0.7$^{\circ}C$ higher than the latter. On the other hand, when ground water is used, the daily water temperatures in a paddy field are respectively 21.$0^{\circ}C$ and 19.3$^{\circ}C$ by practising standing water and the gravity flow method. It can be seen that the former is approximately 1.$0^{\circ}C$ higher than the latter. (2) When the non-water-logged cultivation is practised, the yield of brown rice is 516.3kg/10a, while the yield of brown rice from ground water irrigation plot throughout the whole irrigation period and surface water irrigation plot are 446.3kg/10a and 556.4kg/10a, respectivelely. This means that there is no significant difference in yields between surface water irrigation practice and non-water-logged cultivation, and also means that non-water-logged cultivation results in a 12.6 percent increase in yield compared with the yield from the ground water irrigation plot. (3) The black and white coloring on the inside surface of the water warming ponds has no substantial effect on the temperature of the water. The average daily water temperatures of the various water warming ponds, having different depths, are expressed as Y=aX+b, while the daily average water temperatures at various depths in a water warming pond are expressed as Y=a(b)x (where Y: the daily average water temperature, a,b: constants depending on the type of water warming pond, X; water depth). As the depth of water warning pond is increased, the diurnal difference of the highest and the lowest water temperature is decreased, and also, the time at which the highest water temperature occurs, is delayed. (4) The degree of warming by using a polyethylene tube, 100m in length and 10cm in diameter, is 4~9$^{\circ}C$. Heat exchange rate of a polyethylene tube is 1.5 times higher than that or a water warming channel. The following equation expresses the water warming mechanism of a polyethylene tube where distance from the tube inlet, time in day and several climatic factors are given: {{{{ theta omega (dwt)= { a}_{0 } (1-e- { x} over { PHI v })+ { 2} atop { SUM from { { n}=1} { { a}_{n } } over { SQRT { 1+ {( n omega PHI) }^{2 } } } } LEFT { sin(n omega t+ { b}_{n }+ { tan}^{-1 }n omega PHI )-e- { x} over { PHI v }sin(n omega LEFT ( t- { x} over {v } RIGHT ) + { b}_{n }+ { tan}^{-1 }n omega PHI ) RIGHT } +e- { x} over { PHI v } theta i}}}}{{{{ { theta }_{$\infty$ }(t)= { { alpha theta }_{a }+ { theta }_{ w'} +(S- { B}_{s } ) { U}_{w } } over { beta } , PHI = { { cpDU}_{ omega } } over {4 beta } }}}} where $\theta$$\omega$; discharged water temperature($^{\circ}C$) $\theta$a; air temperature ($^{\circ}C$) $\theta$$\omega$';ponded water temperature($^{\circ}C$) s ; net solar radiation(ly/min) t ; time(tadian) x; tube length(cm) D; diameter(cm) ao,an,bn;constants determined from $\theta$$\omega$(t) varitation. cp; heat capacity of water(cal/$^{\circ}C$ ㎥) U,Ua; overall heat transfer coefficient(cal/$^{\circ}C$ $\textrm{cm}^2$ min-1) $\omega$;1 velocity of water in a polyethylene tube(cm/min) Bs ; heat exchange rate between water and soil(ly/min)

  • PDF