• Title/Summary/Keyword: Si-SiC-graphite

Search Result 219, Processing Time 0.043 seconds

Electrochemical Performance of Graphite/Silicon/Carbon Composites as Anode Materials for Lithium-ion Batteries (리튬이온배터리 Graphite/Silicon/Carbon 복합 음극소재의 전기화학적 성능)

  • Jo, Yoon Ji;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.56 no.3
    • /
    • pp.320-326
    • /
    • 2018
  • In this study, Graphite/Silicon/Carbon (G/Si/C) composites were synthesized to improve the electrochemical properties of Graphite as an anode material of lithium ion battery. The prepared G/Si/C composites were analyzed by XRD, TGA and SEM. Also the electrochemical performances of G/Si/C composites as the anode were performed by constant current charge/discharge, rate performance, cyclic voltammetry and impedance tests in the electrolyte of $LiPF_6$ dissolved inorganic solvents (EC:DMC:EMC=1:1:1 vol%). Lithium ion battery using G/Si/C electrode showed better characteristics than graphite electrode. It was confirmed that as the silicon content increased, the capacity increased but the capacity retention ratio decreased. Also, it was shown that both the capacity and the rate performances were improved when using the Silicon (${\leq}25{\mu}m$). It is found that in the case of 10 wt% of Silicon (${\leq}25{\mu}m$), G/Si/C composites have the initial discharge capacity of 495 mAh/g, the capacity retention ratio of 89% and the retention rate capability of 80% in 2 C/0.1 C.

SiC composite formed by Si vapor diffusion into porous graphite (다공질 그래파이트내부로 Si 증발입자 확산에 의해 형성되는 SiC 복합재료)

  • Park, Jang-Sick
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.167-167
    • /
    • 2015
  • SiC thin films made by vapor silicon infiltration into porous graphite can be obtained for shorter time than liquid silicon. Si diffusion coefficient is estimated by comparing experiment results with quadratic equation obtained by Fick's second law.

  • PDF

Growth of SiC Oxidation Protective Coating Layers on graphite substrates Using Single Source Precursors

  • Kim, Myung-Chan;Heo, Cheol-Ho;Park, Jin-Hyo;Park, Seung-Jun;Han, Jeon-Geon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.122-122
    • /
    • 1999
  • Graphite with its advantages of high thermal conductivity, low thermal expansion coefficient, and low elasticity, has been widely used as a structural material for high temperature. However, graphite can easily react with oxygen at even low temperature as 40$0^{\circ}C$, resulting in CO2 formation. In order to apply the graphite to high temperature structural material, therefore, it is necessary to improve its oxidation resistive property. Silicon Carbide (SiC) is a semiconductor material for high-temperature, radiation-resistant, and high power/high frequency electronic devices due to its excellent properties. Conventional chemical vapor deposited SiC films has also been widely used as a coating materials for structural applications because of its outstanding properties such as high thermal conductivity, high microhardness, good chemical resistant for oxidation. Therefore, SiC with similar thermal expansion coefficient as graphite is recently considered to be a g행 candidate material for protective coating operating at high temperature, corrosive, and high-wear environments. Due to large lattice mismatch (~50%), however, it was very difficult to grow thick SiC layer on graphite surface. In theis study, we have deposited thick SiC thin films on graphite substrates at temperature range of 700-85$0^{\circ}C$ using single molecular precursors by both thermal MOCVD and PEMOCVD methods for oxidation protection wear and tribological coating . Two organosilicon compounds such as diethylmethylsilane (EDMS), (Et)2SiH(CH3), and hexamethyldisilane (HMDS),(CH3)Si-Si(CH3)3, were utilized as single source precursors, and hydrogen and Ar were used as a bubbler and carrier gas. Polycrystalline cubic SiC protective layers in [110] direction were successfully grown on graphite substrates at temperature as low as 80$0^{\circ}C$ from HMDS by PEMOCVD. In the case of thermal MOCVD, on the other hand, only amorphous SiC layers were obtained with either HMDS or DMS at 85$0^{\circ}C$. We compared the difference of crystal quality and physical properties of the PEMOCVD was highly effective process in improving the characteristics of the a SiC protective layers grown by thermal MOCVD and PEMOCVD method and confirmed that PEMOCVD was highly effective process in improving the characteristics of the SiC layer properties compared to those grown by thermal MOCVD. The as-grown samples were characterized in situ with OES and RGA and ex situ with XRD, XPS, and SEM. The mechanical and oxidation-resistant properties have been checked. The optimum SiC film was obtained at 85$0^{\circ}C$ and RF power of 200W. The maximum deposition rate and microhardness are 2$mu extrm{m}$/h and 4,336kg/mm2 Hv, respectively. The hardness was strongly influenced with the stoichiometry of SiC protective layers.

  • PDF

The role of porous graphite plate for high quality SiC crystal growth by PVT method (고품질 4H-SiC 단결정 성장을 위한 다공성 흑연 판의 역할)

  • Lee, Hee-Jun;Lee, Hee-Tae;Shin, Hee-Won;Park, Mi-Seon;Jang, Yeon-Suk;Lee, Won-Jae;Yeo, Im-Gyu;Eun, Tai-Hee;Kim, Jang-Yul;Chun, Myoung-Chul;Lee, Si-Hyun;Kim, Jung-Gon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.2
    • /
    • pp.51-55
    • /
    • 2015
  • The present research is focused on the effect of porous graphite what is influenced on the 4H-SiC crystal growth by PVT method. We expect that it produces more C-rich and a change of temperature gradient for polytype stability of 4H-SiC crystal as adding the porous graphite in the growth cell. The SiC seeds and high purity SiC source materials were placed on opposite side in a sealed graphite crucible which was surrounded by graphite insulator. The growth temperature was around $2100{\sim}2300^{\circ}C$ and the growth pressure was 10~30 Torr of an argon pressure with 5~15 % nitrogen. 2 inch $4^{\circ}$ off-axis 4H-SiC with C-face (000-1) was used as a seed material. The porous graphite plate was inserted on SiC powder source to produce a more C-rich for polytype stability of 4H-SiC crystal and uniform radial temperature gradient. While in case of the conventional crucible, various polytypes such as 6H-, 15R-SiC were observed on SiC wafers, only 4H-SiC polytype was observed on SiC wafers prepared in porous graphite inserted crucible. The defect level such as MP and EP density of SiC crystal grown in the conventional crucible was observed to be higher than that of porous graphite inserted crucible. The better crystal quality of SiC grown using porous graphite plate was also confirmed by rocking curve measurement and Raman spectra analysis.

The Effects of Si and Mo on the Structures and Mechanical Properties in High Si Spheroidal Graphite Cast Iron (고 Si 구상흑연주철의 조직과 기계적성질에 미치는 Si과 Mo의 영향)

  • Kim, Jong-Yeon;Ra, Hyung-Yong
    • Journal of Korea Foundry Society
    • /
    • v.10 no.3
    • /
    • pp.225-234
    • /
    • 1990
  • Spheroidal graphite cast irons which are Fe-3%C-(4-6)%Si-(0-0.5)%Mo were studied to improve not only heat resistance but also mechanical properties. With increasing Mo content, the graphitization was decreased and carbide volume fraction was increased. The graphite spheroidization ratio was not decreased in Fe-3%C-6%Si-Mo system cast iron with increasing Mo content, but that was decreased in Fe-3%C-4%Si-Mo system and Fe-3%C-5%Si-Mo system cast irons. Hardness was increased with the Si and Mo contents. At constant Si content, tensile strength was increased with increasing Mo content, but that was decreased at 6%Si. In the experiment of oxidation, weight gain was decreased as the Si and/or Mo content increased, but increased at 1.5%Mo content.

  • PDF

Effect of Boron Carbide on the Morphology of SiC Conversion Layer of Graphite Substrate formed by Chemical Vapor Reaction (화학기상반응으로 흑연 위에 만든 SiC 반응층의 모양에 미치는 보론 카바이드의 영향)

  • Hong, Hyun-Jung;Riu, Doh-Hyung;Cho, Kwang-Youn;Kong, Eun-Bae;Shin, Dong-Geun;Shin, Dae-Kyu;Lee, Jae-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.8
    • /
    • pp.445-450
    • /
    • 2007
  • A conversion layer of SiC was fabricated on the graphite substrate by a chemical vapor reaction method in order to enhance the oxidation resistance of graphite. The effect of boron carbide containing powder bed on the morphology of SiC conversion layer was investigated during the chemical vapor reaction of graphite with the reactive silicon-source at $1650^{\circ}C\;and\;1700^{\circ}C$ for 1 h. The presence of boron species enhanced the conversion of graphite into SiC, and altered the morphology of the conversion layer significantly as well. A continuous and thick SiC conversion layer was formed only when the boron source was used with the other silicon compounds. The boron is deemed to increase the diffusion of SiOx in SiC/C system.

Raman Scattering Characteristics of Polycrystalline 3C-SiC Thin Films deposited on AlN Buffer Layer (AlN 버퍼층위에 증착된 다결정 3C-SiC 박막의 라만 산란 특성)

  • Chung, Gwiy-Sang;Kim, Kang-San
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.6
    • /
    • pp.493-498
    • /
    • 2008
  • This Paper describes the Raman scattering characteristics of polycrystalline (Poly) 3C-SiC thin films, in which they were deposited on AlN buffer layer by APCVD using hexamethyldisilane (MHDS) and carrier gases (Ar+$H_2$). When the Raman spectra of SiC films deposited on the AlN layer of before and after annealing were worked according to growth temperature, D and G bands of graphite were measured. It can be explained that poly 3C-SiC films admixe with nanoparticle graphite and its C/Si rate is higher than ($C/Si\;{\approx}\;3$) that of the conventional SiC, which has no D and G bands related to graphite. From the Raman shifts of 3C-SiC films deposited at $1180^{\circ}C$ on the AlN layer of after annealing, the biaxial stress of poly 3C-SiC films was obtained as 896 MPa.

Thermodynamic Comparison of Silicon Carbide CVD Process between CH3SiCl3-H2 and C3H8-SiCl4-H2 Systems (탄화규소 CVD 공정에서 CH3SiCl3-H2과 C3H8-SiCl4-H2계의 열역학적 비교)

  • Choi, Kyoon;Kim, Jun-Woo
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.8
    • /
    • pp.569-573
    • /
    • 2012
  • In order to understand the difference in SiC deposition between the $CH_3SiCl_3-H_2$ and $C_3H_8-SiCl_4-H_2$ systems, we calculate the phase stability among ${\beta}$-SiC, graphite and silicon. We constructed the phase-diagram of ${\beta}$-SiC over graphite and silicon via computational thermodynamic calculation considering pressure (P), temperature (T) and gas composition (C) as variables. Both P-T-C diagrams showed a very steep phase boundary between the SiC+C and SiC region perpendicular to the H/Si axis, and also showed an SiC+Si region with a H/Si value of up to 6700 in the $C_3H_8-SiCl_4-H_2$, and 5000 in the $CH_3SiCl_3-H_2$ system. This difference in phase boundaries is explained by the ratio of Cl to Si, which is 4 for the $C_3H_8-SiCl_4-H_2$ system and 3 for the $C_3H_8-SiCl_4-H_2$ system. Because the C/Si ratio is fixed at 1 in the $CH_3SiCl_3-H_2$ system while it can be variable in the $C_3H_8-SiCl_4-H_2$ system, the functionally graded material is applicable for better mechanical bonding during SiC coating on graphite substrate in the $C_3H_8-SiCl_4-H_2$ system.

A Study on Effect of Heat Treatment on Electrochemical Characteristics of Silicon-coated Graphite (실리콘이 코팅된 흑연의 열처리 효과에 따른 전기화학적 특성에 대한 연구)

  • Lee Myungro;Byun Dongjin;Jeon Bub Ju;Lee Joong Kee
    • Korean Journal of Materials Research
    • /
    • v.15 no.1
    • /
    • pp.66-72
    • /
    • 2005
  • Surface modification of the silicon-coated graphite was carried out at $200^{\circ}C\~800^{\circ}C$ under hydrogen atmosphere. The silicon-coated graphites were prepared by fluidized-bed spray coating method. The components of silicon films prepared on the graphite consist of SiO, $SiO_x\;(1. The components of silicon films at $200^{\circ}C$ of heat treatment brought on the higher fraction of SiO and $SiO_x$ than that of $SiO_2$. However, inactive $SiO_2$ fraction increases with increase of the heat treatment temperature. The high content of SiO and $SiO_x$ in the silicon film on graphite leads to the higher discharge capacity in our experimental range.

Fabrication of SiC Converted Graphite by Chemical Vapor Reaction Method(II) (화학적 기상 반응법에 의한 탄화규소 피복 흑연의 제조(II))

  • 윤영훈;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.1
    • /
    • pp.21-29
    • /
    • 1999
  • The effects of density and pore size distribution of substrate in preparing SiC conversiton layer on graphite substrate were investigated. The chemical reaction for formation of SiC conversion layer was occurred at substrate surface or below surface through SiC gas infiltration. It was supposed that the pore size distribution required for the sufficient SiO gas infiltration and the continuous chemical reaction during conversion process was in the range of 1.0∼10.0$\mu\textrm{m}$. In the stress analysis of SiC layer with finite element method (FEM), the residual stress distribution due to thermal mismatch was shown. However, the compressive stress was measured in SiC layer by X-ray diffraction, it was presumed that the residual stress distribution of SiC layer was mainly influenced by the constraining effect of interlayer between SiC layer and graphite substrate, and the densification behaviro and the grain growth in SiC conversion layer.

  • PDF