• Title/Summary/Keyword: Si-SiC-graphite

Search Result 219, Processing Time 0.028 seconds

Effect of Silicon Content over Fe-Cu-Si/C Based Composite Anode for Lithium Ion Battery

  • Doh, Chil-Hoon;Shin, Hye-Min;Kim, Dong-Hun;Chung, Young-Dong;Moon, Seong-In;Jin, Bong-Soo;Kim, Hyun-Soo;Kim, Ki-Won;Oh, Dae-Hee;Veluchamy, Angathevar
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.2
    • /
    • pp.309-312
    • /
    • 2008
  • Two different anode composite materials comprising of Fe, Cu and Si prepared using high energy ball milling (HEBM) were explored for their capacity and cycling behaviors. Prepared powder composites in the ratio Cu:Fe:Si = 1:1:2.5 and 1:1:3.5 were characterized through X-Ray diffraction (XRD) and scanning electron microscope (SEM). Nevertheless, the XRD shows absence of any new alloy/compound formation upon ball milling, the elements present in Cu(1)Fe(1)Si(2.5)/Graphite composite along with insito generated Li2O demonstrate a superior anodic behavior and delivers a reversible capacity of 340 mAh/g with a high coulombic efficiency (98%). The higher silicon content Cu(1)Fe(1)Si(3.5) along with graphite could not sustain capacity with cycling possibly due to ineffective buffer action of the anode constituents.

High-Temperature Fracture Strength of a CVD-SiC Coating Layer for TRISO Nuclear Fuel Particles by a Micro-Tensile Test

  • Lee, Hyun Min;Park, Kwi-Il;Park, Ji-Yeon;Kim, Weon-Ju;Kim, Do Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.6
    • /
    • pp.441-448
    • /
    • 2015
  • Silicon carbide (SiC) coatings for tri-isotropic (TRISO) nuclear fuel particles were fabricated using a chemical vapor deposition (CVD) process onto graphite. A micro-tensile-testing system was developed for the mechanical characterization of SiC coatings at high temperatures. The fracture strength of the SiC coatings was characterized by the developed micro-tensile test in the range of $25^{\circ}C$ to $1000^{\circ}C$. Two types of CVD-SiC films were prepared for the micro-tensile test. SiC-A exhibited a large grain size (0.4 ~ 0.6 m) and the [111] preferred orientation, while SiC-B had a small grain size (0.2 ~ 0.3 mm) and the [220] preferred orientation. Free silicon (Si) was co-deposited onto SiC-B, and stacking faults also existed in the SiC-B structure. The fracture strengths of the CVD-SiC coatings, as measured by the high-temperature micro-tensile test, decreased with the testing temperature. The high-temperature fracture strengths of CVD-SiC coatings were related to the microstructure and defects of the CVD-SiC coatings.

A Study for the Homoepitaxial Growth of Single-crystalline 6H-SiCs.

  • Jang, Seong-Joo;Seol, Woon-Hag;Jeong, Moon-Taek
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.06a
    • /
    • pp.269-274
    • /
    • 1997
  • Silicon carbide(SiC) epilayers were grown by a thermal CVD(chemical vapor deposition) process, and their crystalline properties were investigated. Especially, the growth conditions of 6H-Sic homoepitaxial layers were obtained using a SiC-uncoated graphite susceptor that utilized Mo-plates. In order to investigate the crystallinity of grown layers, Nomarski photograph, transmittance, XRD, Raman, PL and TEM measurements were used. The best quality of 6H-SiC epilayers was obtained in conditions of growth temperature 1500$^{\circ}C$ and C/Si ratio 2.0.

  • PDF

Growth of SiC nanowires by SLS growth mechanism (SLS 성장방법에 의한 SiC 나노와이어의 성장)

  • 노대호;김재수;변동진;진정근;김나리;양재웅
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.116-116
    • /
    • 2003
  • Most of all nano-structures, SiC had a high electrical conductivity and mechanical strengths ay high temperatures. So It was considered a useful materials for nanosized device materials and added materials for strength hardening. Much methods were developed for SiC nanowire and nanorods like CVD, carbothermal reduction, Laser ablation and CNT-confined reduction. These methods used the VLS (Vapor-Liquid-Solid) growth mechanism. In these experiments, SiC nanowire was grown by SLS (Sold-Liquid-Solid) growth mechanism used Graphite substrate, And we characterized its microstructure to compare with VLS growth mechanism.

  • PDF

Deposition of Large Area SiC Thick Films by Low Pressure Chemical Vapor Deposition (LPCVD) Method (저압 화학증착법에 의한 대면적 SiC 후막의 증착)

  • 김원주;박지연;김정일;홍계원;하조웅
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.5
    • /
    • pp.485-491
    • /
    • 2001
  • 일반 산업 및 원자력 관련 산업용 구조소재의 표면특성 향상을 위해 저압 화학기상 증착법에 의해 15~25cm 직경의 흑연기판 위에 고순도의 치밀한 SiC 증착층을 제조하였다. 미세구조와 두께가 균일한 증착층을 얻기 위하여 증착온도의 균일성, 반응가스 고갈효과, 가스 흐름 형태 등의 영향을 고려하였다. 이중에서 반응 용기내의 가스 흐름 형태가 증착층의 균일도에 가장 큰 영향을 주는 것으로 판단되었으며 가스 주입구의 위치와 크기를 조정함으로써 25cm의 직경을 갖는 흑연 기판에 두께 편차가 $\pm$12% 이내인 SiC 증착막을 제조할 수 있었다.

  • PDF

Application of 3-dimensional phase-diagram using FactSage in C3H8-SiCl4-H2 System (C3H8-SiCl4-H2 시스템에서 FactSage를 이용한 압력-조성-온도 3차원 상평형도의 응용)

  • Kim, Jun-Woo;Kim, Hyung-Tae;Kim, Kyung-Ja;Lee, Jong-Heun;Choi, Kyoon
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.6
    • /
    • pp.621-624
    • /
    • 2011
  • In order to deposit a homogeneous and uniform ${\beta}$-SiC films by chemical vapor deposition, we constructed the phase-diagram of ${\beta}$-SiC over graphite and silicon via computational thermodynamic calculation considering pressure(P), temperature(T) and gas composition(C) as variables in $C_3H_8-SiCl_4-H_2$ system. During the calculation, the ratio of Cl/Si and C/Si is maintained to be 4 and 1, respectively, and H/Si ratio is varied from 2.67 to 15,000. The P-T-C diagram showed very steep phase boundary between SiC+C and SiC region perpendicular to H/Si axis and also showed SiC+Si region with very large H/Si value of ~6700. The diagram can be applied not only to the prediction of the deposited phase composition but to compositional variation due to the temperature distribution in the reactor. The P-T-C diagram could provide the better understanding of chemical vapor deposition of silicon carbide.

Behavior of Graphite and Formation of Intermetallic Compound Layer in Hot Dip Aluminizing of Cast Iron (주철 - 알루미늄 합금의 Hot Dip Aluminizing시 흑연 및 금속간화합물 층의 형성 거동)

  • Han, Kwang-Sic;Kang, Yong-Joo;Kang, Mun-Seok;Kang, Sung-Min;Kim, Jin-Su;Son, Kwang-Suk;Kim, Dong-Gyu
    • Journal of Korea Foundry Society
    • /
    • v.31 no.2
    • /
    • pp.66-70
    • /
    • 2011
  • Hot dip aluminizing (HDA) is widely used in industry for improving corrosion resistance of material. The formation of intermetallic compound layers during the contact between dissimilar materials at high temperature is common phenomenon. Generally, intermetallic compound layers of $Fe_2Al_5$ and $FeAl_3$ are formed at the Al alloy and Fe substrate interface. In case of cast iron, high contact angle of graphite existed in the matrix inhibits the formation of intermetallic compound layer, which carry with it the disadvantage of a reduced reaction area and mechanical properties. In present work, the process for the removal of graphite existed on the surface of specimen has been investigated. And also HDA was proceeded at $800^{\circ}C$ for 3 minutes in aluminum alloy melt. The efficiency of graphite removal was increased with the reduction of particle size in sanding process. Graphite appears to be present both in the region of melting followed by re-solidification and in the intermetallic compound layer, which could be attributed to the fact that the surface of cast iron is melted down by the formation of low melting point phase with the diffusion of Al and Si to the cast iron. Intermetallic compound layer consisted of $Fe(Al,Si)_3$ and $Fe_2Al_5Si$, the layer formed at cast iron side contained lower amount of Si.

Effect of Y2O3 Additive Amount on Densification of Reaction Bonded Silicon Carbides Prepared by Si Melt Infiltration into All Carbon Preform (완전 탄소 프리폼으로부터 Si 용융 침투에 의해 제조한 반응 소결 탄화규소의 치밀화에 미치는 Y2O3 첨가량의 영향)

  • Cho, Kyeong-Sik;Jang, Min-Ho
    • Korean Journal of Materials Research
    • /
    • v.31 no.5
    • /
    • pp.301-311
    • /
    • 2021
  • The conversion of all carbon preforms to dense SiC by liquid infiltration can become a low-cost and reliable method to form SiC-Si composites of complex shape and high density. Reactive sintered silicon carbide (RBSC) is prepared by covering Si powder on top of 0.5-5.0 wt% Y2O3-added carbon preforms at 1,450 and 1,500℃ for 2 hours; samples are analyzed to determine densification. Reactive sintering from the Y2O3-free carbon preform causes Si to be pushed to one side and cracking defects occur. However, when prepared from the Y2O3-added carbon preform, an SiC-Si composite in which Si is homogeneously distributed in the SiC matrix without cracking can be produced. Using the Si + C = SiC reaction, 3C and 6H of SiC, crystalline Si, and Y2O3 phases are detected by XRD analysis without the appearance of graphite. As the content of Y2O3 in the carbon preform increases, the prepared RBSC accelerates the SiC conversion reaction, increasing the density and decreasing the pores, resulting in densification. The dense RBSC obtained by reaction sintering at 1,500 ℃ for 2 hours from a carbon preform with 2.0 wt% Y2O3 added has 0.20 % apparent porosity and 96.9 % relative density.

Synthesis of $\beta$-Sialon from Wando Pyrophyllite (완도납석으로 부터 $\beta$-Sialon의 합성)

  • 이홍림;신현곤
    • Journal of the Korean Ceramic Society
    • /
    • v.21 no.1
    • /
    • pp.5-10
    • /
    • 1984
  • $eta$-Sialon synthesis was investigated via the simulataneous reduction and nitriding of Wando pyrophyllite. When Wando pyrophyllite-graphite-$Si_3N_4$ seed mixture was heated at 135$0^{\circ}C$ for as long as 10 hours in 80% $N_2$-20%$H_2$ atomsphere $eta$-$Si_3N_4$ solid solution was mainly formed together with a small amount of $\alpha$-$Si_3N_4$ The value z of the forming $Si_{6-x}Al_2O_2N{8-z}$ was decreased with heating time.

  • PDF

Effects of Mold on Properties of SiC-$ZrB_2$ Composites through SPS (SPS법에 의한 SiC-$ZrB_2$ 복합체의 특성에 미치는 몰드의 영향)

  • Shin, Yong-Deok;Lee, Jung-Hoon;Park, Jin-Hyoung;Ju, Jin-Young;Lee, Hee-Seung
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1515-1516
    • /
    • 2011
  • Conductive SiC-$ZrB_2$ composites were produced by subjection a 40:60(vol%) mixture of zirconium diborided ($ZrB_2$) powder and ${\beta}$-silicon carbide (SiC) matrix to spark plasma sintering (SPS) under argon atmosphere. Inner diameters of graphite mold were $15mm{\varphi}$ and $20mm{\varphi}$, respectively. The relative densities of $15mm{\varphi}$ and $20mm{\varphi}$ sample were 99.4% and 97.88%, respectively. Reactions between ${\beta}$-SiC and $ZrB_2$ were not observed via x-ray diffraction (hereafter, XRD) analysis. The result of FE-SEM of fracture face of $15mm{\varphi}$ sample was intergranular fracture and that of $20mm{\varphi}$ sample was transgranular fracture. Because the fracture strength of $15mm{\varphi}$ sample was much higher than that of $20mm{\varphi}$ sample. The electrical resistivity, $9.37{\times}10^{-4}{\Omega}{\cdot}cm$ of $15mm{\varphi}$ sample was higher than that, $6.17{\times}10^{-4}{\Omega}{\cdot}cm$ of $20mm{\varphi}$ sample because of densification. Although sintering condition of SPS is same. the properties of sintered SiC-$ZrB_2$ compacts were changed according to inner diameter of graphite mold.

  • PDF