• 제목/요약/키워드: Si melt

검색결과 269건 처리시간 0.031초

초음파 용탕처리를 이용한 알루미늄 피스톤의 조직 미세화 (Refinement of Microstructures for Aluminum Piston through Ultrasonic Melt Treatment)

  • 이상화;정재길;이정무;조영희;윤운하;안용식;윤동춘;이정근;류관호
    • 한국주조공학회지
    • /
    • 제36권2호
    • /
    • pp.53-59
    • /
    • 2016
  • The effects of ultrasonic melt treatment on the microstructures of aluminum piston were examined at five observation parts having different cooling rates. The microstructure of aluminum piston consisted of primary Si, eutectic Si, and various types of intermetallic compounds. Regardless of cooling rate, the ultrasonic melt treatment transformed dendritic eutectic cells to equiaxed eutectic cells and it decreased the sizes of eutectic Si and intermetallic compounds that exist at eutectic cell boundaries. In the absence of ultrasonic treatment, coarse primary Si particles were severely segregated and its size was increased with decreasing the cooling rate. The ultrasonic treatment decreased the size of primary Si particles from $25.5{\sim}31.0{\mu}m$ to $17.6{\sim}23.1{\mu}m$, depending on the cooling rate. In the presence of ultrasonic treatment, relatively fine primary Si particles were homogeneously distributed throughout the piston. In addition, the ultrasonic treatment increased the population density and area fraction of fine primary Si particles.

용탕단조법에 의하여 제조한 $SiC_p$/Al 복합재료의 2차 성형공정이 기계적 성질에 미치는 영향 (Effects of Secondary Forming Process on Mechanical Properties of $SiC_p$/Al Composites Fabricated by Squeeze Casting)

  • 서영호;강충길
    • 대한기계학회논문집A
    • /
    • 제20권11호
    • /
    • pp.3474-3490
    • /
    • 1996
  • A metal matrix composites(MMCs) for A16061 reinforced with silicon carbide particles is fabricated by melt-stirring method. The primary products of MMCs billets are prepared by volume fractions 5 vol% to 20 vol% and particle size $13\mu m$ to $22\mu m$.This paper will be made to examine the microstructure and mechanical properties of fabricated $SiC_p$/Al 6061 composite by melt-stirring and squeeze casting method. The MMC billets is extruded at $500^{\circ}C$ under the constant extrusion velocity $V_e$=2mm/min using curved shape die. Extrusion force, particle rearrangement, micro structure and mechanical properties of extruded composites will be investigated. The mechanical properties of primary billets manufactured by melt-stirring and squeeze casting method will be compared with extrusion specimen. The effect of volume fraction and size of the reinforcements will be studied. The increase in uniformity of particle dispersion is the major reason for an improvement in reliability due to hot extrusion with optimal shape die. Experimental Young's modulus and 0.2% offset yield strength for the extruded MMCs will be compared with theretical values calculated by the Eshelby method. A method will be proposed for the prediction of Young's modulus and yield strength in $SiC_p$ reinforced MMCs.

급냉응고된 Mg-Al-Si-xCa 합금의 시효경화 및 미세조직 (Age Hardening and Microstructure in Rapidly Solidified Mg-Al-Si-xCa Alloys)

  • 김완철;박지하;류봉선;박원욱
    • 한국주조공학회지
    • /
    • 제19권5호
    • /
    • pp.433-439
    • /
    • 1999
  • Rapidly solidified Mg-Al-Si base alloys containing Ca were obtained by melt spinning. The melt-spun ribbons were aged isochronally or isothermally to investigate age hardening phenomena and microstructural change according to the alloy composition. Age hardening occurred after aging at $200^{\circ}C$ for 1h mainly due to the precipitation of $Al_2Ca$ and $Mg_2Ca$, which have coherent interfaces with the matrix. With the increase of Ca content, the hardness values of the alloy ribbons were increased. Among the alloys, Mg-10Al-2 Si-3Ca alloy showed a good thermal stability at elevated temperature.

  • PDF

Al-합금의 용융산화거동에 미치는 $\textrm{SiO}_2$도판트 량의 영향 (The Effects of the Amount of $\textrm{SiO}_2$ Dopant on the Melt Oxidation Behavior of the Al-Alloy)

  • 강정윤;김일수
    • 한국재료학회지
    • /
    • 제9권6호
    • /
    • pp.609-614
    • /
    • 1999
  • The effect of the amount of $SiO_2$dopant on the behavior of $AlO_2$$O_3$-composite formation by melt oxdation of Al-alloy was examined in this paper. The $SiO_2$powder was spread on the top surface of the Al-1Mg-3-Si-5Zn-1Cu alloy in th alumina crucible. The selected amount of each powder was 0.03, 0.10, 0.16g/$\textrm{cm}^2$. The oxidation behavior was determined by observing the weight gain after the heat treatment for 10 hours at 1373K. The macroscopic structure of formed oxide layer was examined by an optical microscope. The top surface and the cross-section of the grown oxide layer were investigated by SEM and analysed by EDX. The $SiO_2$ powder was determined to enhance oxidation by thermit reaction with Al which reduced the growth incubation period of the oxidation layer. As the amount of the $SiO_2$dopant increased, the growth rate decreased due to the precipitated Si which blocked the Al-alloy channel in the composite materials. However, more uniform layer was obtained due to the occurrance of the enhanced oxidation reaction in the whole alloy surface compared to the case of addition of less amount of dopant.

  • PDF

알루미늄합금 용탕중의 산화개재물 형성 (Formation of Oxide Inclusions in the Molten Aluminium Alloys)

  • 임정호;김기배;윤우영;윤의박
    • 한국주조공학회지
    • /
    • 제18권5호
    • /
    • pp.439-449
    • /
    • 1998
  • Formation of oxide inclusions in the molten aluminium alloys during solidification is investigated. The oxidation tendency of both Al-4.5wt%Cu and Al-7wt%Si alloys is increased with melt temperature, particularly over $700^{\circ}C$. However, an Al-5wt%Mg alloy exhibits a decreasing mode over $800^{\circ}C$. The oxidation behavior with holding time shows the S curve shape for all of the alloys. It is shown that the mechanism of oxidation of Al-5wt%Mg alloy has a two step process different from that of Al-4.5wt%Cu and Al-7wt%Si alloys. The species and morphology of oxide inclusions in each alloy is also shown. The microstructure was more coarsened during solidification when the melt contains a large amount of oxide inclusion than when it doesn't. This result can be explained in terms of both the hindrance of heat extraction by oxide film formed on the aluminium melt and the difference of heat capacity between the aluminium melt and oxide inclusion during solidification.

  • PDF

용융 Si 침윤방법에 의한 반응소결 탄화규소 고온가스 필터의 제조 및 특성 (Fabrication and Properties of Reaction Bonded SiC Hot Gas Filter Using Si Melt Infiltration Method)

  • 황성식;김태우
    • 한국세라믹학회지
    • /
    • 제40권9호
    • /
    • pp.891-896
    • /
    • 2003
  • IGCC 발전 시스템에 사용되는 고온 가스 필터에 대하여 용융 Si 침윤공정 방법을 사용한 고강도 반응소결 탄화규소 고온 가스 필터 제조 공정이 개발되었다. 용융 Si 침윤 반응으로 제조된 반응소결 탄화규소의 상온 및 고온 파괴강도는 약 50-123, 60-66 MPa이었으며, 반응소결 탄화규소 다공체의 평균기공크기 및 기공율의 범위는 각각 60- 70 $\mu\textrm{m}$ 및 약 34 vol%이었다. 용융 Si 침윤 방법으로 제조된 반응 소결 탄화 규소 다공체에서는 SiC 입자 사이에 SiC/Si으로 이루어진 기지 상이 형성되어 고온 파괴 강도가 점토 결합 탄화 규소 다공체보다 우수하였다. 소결된 지지층 위에 Si 분말이 첨가되지 않은 slurry를 사용하여 여과층을 제조하였다. 여과층에 사용된 Sic 입자의 크기가 10$\mu\textrm{m}$에서 34 $\mu\textrm{m}$로 증가됨에 따라 SiC 입자 사이에 형성된 기지상의 두께가 증가하였다. 분진이 포함된 유체의 face velocity 변화에 따른 압손의 관계는 US filter사 Schumacher type 20 filter의 기체 유동 특성과 비슷하게 나타났으며, 분진여과 측정시 4분 내에 누출 분진의 크기가 1 $\mu\textrm{m}$ 크기 이하로 감소되었다.

Al-Si 합금 융체로부터 순 실리콘의 원심분리 추출 (Extraction of Pure Si from an Al-Si Alloy Melt during Solidification by Centrifugal Force)

  • 조주영;강복현;김기영
    • 대한금속재료학회지
    • /
    • 제49권11호
    • /
    • pp.874-881
    • /
    • 2011
  • The present study describes a new technique to extract the primary silicon from an Al-Si alloy melt using centrifugal force during its solidification. The primary silicon was separated from an Al-50 wt.%Si alloy by centrifugal force in the form of a foam, which facilitated subsequent acid leaching to extract the pure silicon due to its wide surface area. The foam recovery after centrifugal separation was decreased as centrifugal acceleration was increased. The final recovery after acid leaching became closer to the solid fraction of the alloy, which was calculated from the Al-Si binary phase diagram, with increasing centrifugal acceleration due to the effective removal of the attached Al on the foam. The purity of the primary silicon obtained by the centrifugal separation method was over 99.99%, with only aluminum being also present.

반응소결 탄화규소 다공체의 기계적 특성 (Mechanical Properties of Porous Reaction Bonded Silicon Carbide)

  • 황성식;박상환;한재호;한경섭;김찬목
    • 한국세라믹학회지
    • /
    • 제39권10호
    • /
    • pp.948-954
    • /
    • 2002
  • 차세대 발전 시스템에서 사용되는 고온 가스 필터용 지지층 소재를 제조하기 위하여 용융 Si 침윤 방법으로 기공율이 32∼36%, 주기공 크기가 37∼90 ${\mu}m$ 범위를 갖는 고강도 다공질 반응소결 탄화규소(RBSC)를 개발하였다. 반응소결 탄화규소 다공체의, 최대 파괴강도는 120MPa이었으며, 용융 Si 침윤 방법으로 제조된 반응소결 탄화규소 다공체에서는 SiC 입자 사이에 SiC/Si로 이루어진 기지상이 형성되어 있기 때문에 파괴 강도 및 열충격 특성이 점토 결합 탄화규소 다공체 보다 우수하였다. 반응소결 탄화규소 다공체의 기공율 및 기공 크기는 잔류 Si의 양 및 성형체에 사용한 SiC 입자 크기에 따라 다르게 나타났다.