• Title/Summary/Keyword: Si/Al Ratio

Search Result 612, Processing Time 0.024 seconds

The Study on the CEC Increase and Granulation of Natural Zeolite -The Effect of NaOH Concentration and Na2O/Al2O3 Ratio (천연(天然) Zeolite의 CEC 증가(增加)와 입단화(粒團化)에 관(關)한 연구(硏究) -1. NaOH농도(濃度)와 조반비(曺礬比)(Na2O/Al2O3)의 영향(影響))

  • Choi, Jyung;Hur, Nam-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.26 no.2
    • /
    • pp.67-71
    • /
    • 1993
  • This study was carried out to develop the soil conditioner and/or the absorbent of high CEC with the natural zeolite poeder whose price was very low. The $SiO_2/Al_2O_3$ ratio & CEC of the natural zeolite were 6.78 and 67.5me/100g respectively. The CEC of the post-reaction product which was treated with 3N-NaOH and $Na_2O/Al_2O_3$ ratio. 9.5 for 8hours was about 200me/100g, which was the highest value than any other treatments. The dominant clay minerals were clinoptilolite, mordenite and smectite in natural zeolite, while phillipsite in the post-reaction product.

  • PDF

Thermal Stability of Cesium Reacted with Fly Ash in Hydrogen Atmosphere (환원분위기하 석탄회 세슘 반응생성물의 열적 안정성)

  • Shin Jin-Myeong;Kim Kwang-Ryul;Park Jang-Jin;Shin Seol-Woo
    • Journal of environmental and Sanitary engineering
    • /
    • v.19 no.4 s.54
    • /
    • pp.1-8
    • /
    • 2004
  • This study has been investigated to analyze the thermal stability of cesium reacted with fly ash with changing mole ratio of Cs/Al in hydrogen atmosphere. When the $CsNO_3$ and fly ash were reacted at $1000^{\circ}C$ in hydrogen atmosphere, cesium $nepheline(CsAlSiO_4)$ Phase began to emerge in addition to $pollucite(CsAlSi_2O_6)$ phase when the cesium loading quantity was greater than $0.32(g-Cs_2O/g-fly\; ash)$. Cesium $nepheline(CsAlSiO_4)$ Phase increased with increasing cesium loading quantity. When cesium trapped on a fly ash was exposed to $1200^{\circ}C$ in hydrogen atmosphere, no weight loss due to the volatilization was shown until the cesium loading quantity was reached at $0.32(g-Cs_2O/g-fly\; ash)$. In the case of the cesium loading quantity of $0.48-0.74(g-Cs_2O/g-fly\;ash)$ in hydrogen atmosphere, the weight loss increased with increasing the cesium loading quantity. This is considered to be due to the cesium $nepheline(CsAlSiO_4)$ whose vapor pressure is higher than that of $pollucite(CsAlSi_2O_6)$.

Correlation study on microstructure and mechanical properties of rice husk ash-Sodium aluminate geopolymer pastes

  • Singh, N. Shyamananda;Thokchom, Suresh;Debbarma, Rama
    • Advances in concrete construction
    • /
    • v.11 no.1
    • /
    • pp.73-80
    • /
    • 2021
  • Rice Husk Ash (RHA) geopolymer paste activated by sodium aluminate were characterized by X-ray diffractogram (XRD), scanning electron microscope (SEM), energy dispersion X-Ray analysis (EDAX)and fourier transform infrared spectroscopy (FTIR). Five series of RHA geopolymer specimens were prepared by varying the Si/Al ratio as 1.5, 2.0, 2.5, 3.0 and 3.5. The paper focuses on the correlation of microstructure with hardened state parameters like bulk density, apparent porosity, sorptivity, water absorption and compressive strength. XRD analysis peaks indicates quartz, cristobalite and gibbsite for raw RHA and new peaks corresponding to Zeolite A in geopolymer specimens. In general, SEM micrographs show interconnected pores and loosely packed geopolymer matrix except for specimens made with Si/Al of 2.0 which exhibited comparatively better matrix. Incorporation of Al from sodium aluminate were confirmed with the stretching and bending vibration of Si-O-Si and O-Si-O observations from the FTIR analysis of geopolymer specimen. The dense microstructure of SA2.0 correlate into better performance in terms of 28 days maximum compressive strength of 16.96 MPa and minimum for porosity, absorption and sorptivity among the specimens. However, due to the higher water demand to make the paste workable, the value of porosity, absorption and sorptivity were reportedly higher as compared with other geopolymer systems. Correlation regression equations were proposed to validate the interrelation between physical parameters and mechanical strength. RHA geopolymer shows comparatively lower compressive strength as compared to Fly ash geopolymer.

Characteristics of Thick GaN on Si using AlN and LT-GaN Buffer Layer (AlN과 저온 GaN 완충층을 이용한 Si 기판상의 후막 GaN 성장에 관한 연구)

  • Baek, Ho-Seon;Lee, Jeong-Uk;Kim, Ha-Jin;Yu, Ji-Beom
    • Korean Journal of Materials Research
    • /
    • v.9 no.6
    • /
    • pp.599-603
    • /
    • 1999
  • We have investigated the growth characteristics of thick GaN on Sim substrate with AlN and low temperature GaN buffer layer. The vertical hydride vapor phase epitaxy system with $GaCl_3$ precursor was used for growth of GaN. AlN and GaN buffer layer were deposited on Si substrate to reduce the lattice mismatch and the thermal expansion coefficient mismatch between si and GaN. Optimization of deposition condition for AlN and low temperature GaN buffer layers were carried out. We studied the effects of growth temperature, V/III ratio on the properties of thick GaN. Surface morphology, growth rate and crystallinity of thick GaN were measured using Atomic Force Microscopy (AFM), $\alpha-step$-, Scanning Electron Microscopy (SEM) and X-Ray Diffractometer(XRD).

  • PDF

Microstructure of Aluminum Can Body Alloys produced by Recycled UBC and Virgin Aluminum (폐알루미늄캔과 신지금으로 제조된 캔용 알루미늄 합금의 미세조직)

  • Lim Cha-Yang;Kang Seuk-Bong
    • Resources Recycling
    • /
    • v.11 no.6
    • /
    • pp.31-37
    • /
    • 2002
  • Microstructure of aluminum alloys produced by the different mixing ratio of secondary ingot made by aluminum UBC (used beverage can) and virgin aluminum was investigated. The phase transitions of casted ingot by heat treatment were also studied. The alloys were melted at the electric resistance furnace, then casted using ceramic filter. Homogenization heat treatment was conducted at $615^{\circ}C$ for 10hrs to control cast microstructure. There were several kinds of phases, in as-cast condition, such as $\alpha$($Al_{12}$ $((Fe,Mn)_3$Si), $\beta$($Al_{6}$ (Fe,Mn)), and fine $Mg_2$Si phases. Especially, the amount of $\beta$-phase which was harmful in forming process was large. The $\beta$-Phase formed was transformed to u-phase by heat treatment. The fine $Mg_2$Si in the aluminum matix was also transformed to $\alpha$-phase by this heat treatment. Impurities filtered during casting process were identified as intermetallic compounds of Fe, Cu, Si.

Synthesis and Optical Properties of M-Si(Al)-O-N (M: Sr, Ca) Phosphors for white Light Emitting Diodes (백색 발광다이오드용 M-Si(Al)-O-N (M: Sr, Ca) 형광체의 합성 및 발광 특성)

  • Lee, Seung-Jae;Lee, Jun-Seong;Kim, Young-Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.2
    • /
    • pp.41-45
    • /
    • 2012
  • Oxynitride green phosphors for white light emitting diodes (LEDs) were synthesized and their optical properties were evaluated. The N/O ratio ($\delta$) of $SrSi_2O_{2-{\delta}}N_{2+2/3{\delta}}:Eu^{2+}$ closely depended on the synthesizing conditions. The most excellent green emission (545 nm), which was assigned to the $5d{\rightarrow}4f$ transition of $Eu^{2+}$ ions, was achieved at the conditions of $1700^{\circ}C$, 5 mol% $Eu^{2+}$, and $H_2$ atmosphere. The well-developed $Ca-{\alpha}-SiAlON:Yb^{2+}$ particles with homogeneous size were obtained at m = 3 (n = 0.15) for the compound of $Ca_{0.5m-0.005}Yb_{0.005}Si_{12-(m+n)}Al_{m+n}O_nN_{16-n}$, resulting in the strong green emission at around 550 nm.

Characterization of Wear Resistance of Particle Reinforced Al Matrix Composite Manufactured by Centrifugal Spray Casting (분사주조한 Al기지 입자강화 복합재료의 마모특성)

  • Bae, Cha-Hurn;Choi, Hak-Kyu;Bang, Kuk-Soo
    • Journal of Korea Foundry Society
    • /
    • v.24 no.2
    • /
    • pp.108-114
    • /
    • 2004
  • $Al_2O_3$, SiC reinforced Al matrix composites were fabricated by centrifugal spray casting method and their wear resistance characteristics have been studied. Particles are generally uniformly distributed in the microstructure of as-cast specimens. In order to investigate the effect of secondary deformation, hot rolling was performed for each specimen of pure Al matrix composites with a reduction of 10, 20, 30, 40 and 50% at $400{\sim}500^{\circ}C$, respectively. Microstructure of specimen showed that particle distribution density and hardness increased because of increasing of reduction ratio. Wear test with a various sliding velocity of 1.98, 2.38, 2.88 and 3.53m/sec showed that the wear resistance characterization of composite improved remarkably compared to the normal alloy and performs without reinforced particles. Microstructural observation for the worn surface of pure Al specimens without particles showed that a change in wear mechanism seemed to separate layer by surface fatigue. In other case of Al composite reinforced with $Al_2O_3$ and SiC, the grinder type of wear mechanism was shown.

Effect of Chemical Composition on the Latent Hydraulic Activity of Blast Furnace Slag (고로슬래그의 잠재수경성에 미치는 화학조성의 영향)

  • 장복기;임용무
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.5
    • /
    • pp.453-458
    • /
    • 2000
  • Glasses showing the composition of blast furnace slag were made in the laboratory, and the effect of the chemical composition on the latent hydraulic activity of the slags was examined. The latent hydraulicity was greatly influenced by the composition change, the optimal characteristic of the hydraulicity was achieved at the slag composition of 47CaO:20Al2O3:33SiO2. The content of CaO and Al2O3 were not equivalent to the hydraulic activity of the slags as the b-formula (KS L 5210) indicates. Good latent hydraulicity was shown when Al2O3 was richly contained at the high (CaO+Al2O3):SiO ratio, while the more the MgO content was, the more negative the result turned out.

  • PDF

Mechanical Characteristics and Microstructures of Hypereutectic Al-17Si-5Fe Extruded Alloys Prepared by Rapid Solidification Process (급속응고법으로 제조한 과공정 Al-17Si-5Fe 합금 압출재의 미세조직 및 기계적 특성)

  • KIM, Tae-Jun;LEE, Se-dong;BECK, Ah-Ruem;KIM, Duck-Hyun;LIM, Su-Gun
    • Journal of Korea Foundry Society
    • /
    • v.39 no.2
    • /
    • pp.26-31
    • /
    • 2019
  • In this study, the mechanical characteristics and microstructure of hypereutectic Al-17Si-5Fe extruded alloys prepared by a rapid solidification process (RSP) were investigated. The hypereutectic Al alloy was fabricated by means of RSP and permanent casting. For RSP, the Al alloy melted at $920^{\circ}C$, cooling the specimens at a rate of $10^6^{\circ}C/s$ when the RSP was used, thus allowing the refining of primary Si particles more than when using permanent casting, at a rate of about 91%. We tested an extrusion RSP billet and a permanent-cast billet. Before the hot-extrusion process, heating to $450^{\circ}C$ took place for one hour. The samples were then hotextruded with a condition of extrusion ratio of 27 and a ram speed of 0.5 mm/s. Microstructural analyses of the extruded RSP method and the permanent casting method were carried out with OM and SEM-EDS mapping. The mechanical properties in both cases were evaluated by Vickers micro-hardness, wear resistance and tensile tests. It was found that when hypereutectic Al-17Si-5Fe alloys were fabricated by a rapid solidification method, it becomes possible to refine Si and intermetallic compounds. During the preparation of the hypereutectic Al-17Si-5Fe alloy by the rapid solidification method, the pressure of the melting crucible was low, and at faster drum speeds, smaller grain alloy flakes could be produced. Hot extrusion of the hypereutectic Al-17Si-5Fe alloy during the rapid solidification method required higher pressure levels than hot extrusion of the permanent mold-casted alloy. However, it was possible to produce an extruded material with a better surface than that of the hot extruded material processed by permanent mold casting.

MR Characteristics of $Al_2O_3$ Based Magnetic tunneling Junction ($Al_2O_3$를 절연층으로 이용한 스핀 의존성 터널링 접합에서의 자기저항 특성)

  • 정창욱;조용진;정원철;조권구;주승기
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.3
    • /
    • pp.118-122
    • /
    • 2000
  • MR characteristics of $Al_2$ $O_3$ based magnetic tunneling juction with various $Al_2$ $O_3$ thicknesses were investigated. Spin-dependent tunneling junctions, in which the tunneling barrier $Al_2$ $O_3$ is formed by depositing a 1-3 nm thick Al layer, followed by thermal oxidation at room temperature in an $O_2$atmosphere, were fabricated on 4$^{\circ}$tilt(111)Si substrate in 3-gun magnetron sputtering system. The top and bottom ferromagnetic electrodes were Ni$_{80}$Fe$_{20}$ and Co. A maximum Tunneling MR ratio of 14% was obtained in the junction of which insulating barrier thickness was 2 nm. By increasing the tunneling voltage across the junction, maximum MR ratio reduced and finally showed no MR characteristics.s.

  • PDF