• Title/Summary/Keyword: Si/Al 복합

Search Result 350, Processing Time 0.029 seconds

High Temperature Deformation Behavior of SiCp/2124Al Metal Matrix Composites

  • Tian, Y.Z.;Cha, Seung I.;Hong, Soon H.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.69-72
    • /
    • 2002
  • The high temperature deformation behavior of SiCp/2124Al composite and 2124Al alloy was investigated by hot compression test in a temperature ranged $400~475^{\circ}C$ over a strain rate ranged $10^{-3}~1s^{-1}$. The billets of 2124Al alloy and SiCp/2124Al composite were fabricated by vacuum hot pressing process. The stress-strain curve during high temperature deformation exhibited a peak stress, and then the flow stress decreased gradually into a steady state stress with increasing the strain. It was found that the flow-softening behavior was attributed to the dynamic recovery, local dynamic recrystallization and dynamic precipitation during the deformation. The precipitation phases were identified as S' and S by TEM diffraction pattern. Base on the TEM inspection, the relationship between the Z-H parameter and subgrain size was found based on the experiment data. The dependence of flow stress on temperature and strain rate could be formulated well by a hyperbolic-sinusoidal relationship using the Zener-Hollomon parameter.

  • PDF

High-temperature corrosion properties of Al2O3 + (Fe2O3, Al, Cr and Si) mixed sintering materials (Al2O3 + (Fe2O3, Al, Cr and Si) 소결 복합재료의 고온 부식 특성)

  • Kim, Min-Jeong;Won, Seong-Bin;Bong, Seong-Jun;Lee, Dong-Bok;Son, In-Jin
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.170-171
    • /
    • 2012
  • $Fe_2O_3$, Al, Cr과 Si 분말을 고 에너지 볼 밀링해서 나노분말을 제조한 후 고주파유도 가열 활성 연소합성 장치로 1분 이내의 짧은 시간에 합성 및 소결한 $Al_2O_3+4.65(Fe_{0.43}Cr_{0.17}Al_{0.323}Si_{0.077})$, $Al_2O_3$ + 5.33 ($Fe_{0.375}Cr_{0.11}Al_{0.3}Si_{0.075}$), $Al_2O_3$ + 6.15 ($Fe_{0.325}Cr_{0.155}Al_{0.448}Si_{0.072}$), $Al_2O_3$ + 3.3 ($Fe_{0.6}Cr_{0.3}Al_{0.6}$) 소결체 시편을 $700^{\circ}C$의 온도에서 100시간 동안 공기 중에서 산화 및 $N_2-H_20-H_2S$ 혼합 가스 내에서 황화 부식을 실시하였다. 그 결과 산화 및 황화 부식 후에 ${\alpha}-Al_2O_3$가 표면에 생성되어 보호 피막으로 작용하여 우수한 내식성을 보였다.

  • PDF

Preparation of $Al_2O_3-SiC$ Composite Powder by SHS Method (SHS법에 의한 $Al_2O_3-SiC$ 복합분말의 합성)

  • 이형민;이홍림;이형직
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.1
    • /
    • pp.11-16
    • /
    • 1995
  • High reaction heat evolved from the oxidation of Al was used to synthesize SiC, which might be difficult to be formed by SHS. Al2O3-SiC composite powder was easily manufactured using KNO3 as an ignition and reaction catalyst. Unreacted Si and C were observed after reaction dependent upon the composition of starting powders, reaction atmosphere and relative densities of compacted bodies. The unreacted carbon could be removed by calcining at $600^{\circ}C$ and the remaining Si could be removed by dissolving in NaOH solution. The final powder particles were smaller than 1${\mu}{\textrm}{m}$ in size.

  • PDF

Cutting performance of Cr-Al-Si-N micro end-mill tool deposited by a hybrid coatings (하이브리드 코팅에 의한 Cr-Al-Si-N 마이크로 엔드밀공구의 가공성능)

  • Gang, Myeong-Chang;Sin, Seok-Hun;Kim, Min-Uk;Tak, Hyeon-Seok;Kim, Gwang-Ho;Kim, Jeong-Seok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.211-211
    • /
    • 2009
  • 높은 이온화율과 복잡한 형상의 모재에도 표면 도포성 및 균일성을 나타내는 아크이온플래이팅 기술과 비전도성 세라믹 타겟물질에 적용가능한 스퍼터링 기술이 결합된 하이브리드 코팅 시스템(Hybrid coating system)을 이용하였다. 그리고 Cr-Al-N과 Cr-Si-N 코팅막의 강화 기구를 복합시킨 새로운 개념의 Cr-Al-Si-N 코팅막을 초경(WC-Co)시험편에 증착하여 Si 첨가량에 따른 미세구조의 미세경도 특성을 파악하였다. 공구성능 평가는 고속가공조건하에 마이크로 밀링기에서 무코팅(초경공구), Cr-Al-Si-N (Si : 0, 4.5, 8.7, 16 at.%) 코팅 마이크로엔드밀에 대하여 공구마멸에 대한 공구수명을 비교, 평가하였다.

  • PDF

Influences of the Molar Ratio of $Mo/MoO_3$ on Characteristics of $MoSi_2-Al_2O_3$ composites by SHS Methods (연소합성법에 의한 $MoSi_2-Al_2O_3$ 복합재료의 특성에 미치는 $Mo/MoO_3$ 몰비의 영향)

  • 장윤식;이윤복;김용백;김인술;박흥채;오기동
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.11
    • /
    • pp.1209-1216
    • /
    • 1996
  • MoSi2-Al2O3 composites were prepared by thermal explosion mode of self-propagating high temperature syn-thesis (SHS) using element powders of MoO3 Mo Si and Al. The combustion products of MoSi2 which have 10, 20, 30 and 40 wt% Al2O3 showed the molten state in the range of Mo to MoO3 6:1-9.5:1, 2:1-8:1, 1:1-5:1, and 1:1-3:1 (molar ratio) respectively. The combustion products which made least seperation the molten phase from the slag phase were in Mo/MoO3=9, 5:1, 8:1, 5:1 and 3:1 (molar ratio) respectively. Particles size of MoSi2 and Al2O3 in the combustion product were decreased as the molar ratio of Mo to MoO3 increase. By XRD analysis only MoSi2 and $\alpha$-Al2O3 peaks were identified in the combusion products, In case of MoSi2 containing 20wt% Al2O3 5.1wt% Al existed into MoSi2 grains and 30.7wt% Si and 7.7wt% Mo existed into Al2O3 grains. The relative density of MoSi2 containing 10, 20, 30 and 40 wt% Al2O3 were 82.7, 85.2, and 81.9% respectively. The fracture strength of MoSi2-Al2O3 composites increased with increasing Al2O3 and that of MoSi2-20wt% Al2O3 composite was 195 MPa.

  • PDF

Wear Resistance Characteristics of Thermal Sprayed AlSiMg/SiC Composite Coatings on Aluminum Engine Cylinder Bores (Aluminum Engine Cylinder Bore 적용 AlSiMg/SiC 복합 용사피막의 내마모 특성)

  • 양병모;변응선;박경채
    • Journal of Welding and Joining
    • /
    • v.17 no.6
    • /
    • pp.62-69
    • /
    • 1999
  • The advantages of Thermal sprayed coatings as a replacement for cast iron liners are reduced weight, better heat transfer and reduced cost. One of the most important performance attributes of a cylinder bore coating is its wear resistance, since it must survive the abrasive sliding of both the piston rings and the piston skirt. In this study, composite powders were prepared by ball milling of Al-13Si-3Mg(wt%) alloy with SiC particles. The concentrations of SiC were 40 and 60wt%. The composite powders were sprayed using Metco-9MB plasma torch. Plasma sprayed coatings were heat-treated at 500℃ for 3 hours. The wear resistances of the plasma sprayed coatings were found to improve with heat treatment and superior to the commercially available G.C.I.(gray cast iron). AlSiMg-40SiC heat-treated coatings showed the best wear resistance in this study.

  • PDF

Microstructure of Rheocompocast Al-Cu-Ti/SiCp composite (Rheocompocasting한 Al-Cu-Ti/SiCp 복합재료의 조직)

  • Yoon, Yeo-Chang;Choe, Jung-Chul;Hong, Sung-Kil
    • Journal of Korea Foundry Society
    • /
    • v.15 no.4
    • /
    • pp.368-376
    • /
    • 1995
  • An Al-composite material was fabricated with using the rheocompocasting process and the microstructure of the Al-Cu/SiCp composite material was investigated depending on the stirring times and the amount of Ti additions. The distribution of SiC dispersion shows the good result at the stirring time of 30 min. The degree of microdistribution of the $Al_2Cu$ and SiCp is improved when the amount of Ti addition is increased. At the compositon of 0.3%Ti, the primary solid is the compound of $Al_3Ti$ and no exist of the SiCp and $Al_2Cu$ phase around the primary $Al_3Ti$. In the process of compositization, SiCp is found at the primary and final solid parts and is found at the final solid part after remelting. $Al_2Cu$ and SiCp are distributed around and outside of dendrite or independently after remelting, which is different from the process of compositization.

  • PDF

Wetting improvement of SiC/Al Metal Matrix Composite by Cu Surface Treatment (보강재에 도금된 Cu층이 Al/SiC복합재료의 젖음성에 미치는 영향)

  • Lee, Gyeong-Gu;Jo, Gyu-Jong;Lee, Do-Jae
    • Korean Journal of Materials Research
    • /
    • v.11 no.5
    • /
    • pp.398-404
    • /
    • 2001
  • Effects of coating treatment of metallic Cu film on SiC for Al/SiC composite were studied. The Copper was deposited on SiC by electroless plating method. Al/sic composite was fabricated at temperature range of $670^{\circ}C$ to 90$0^{\circ}C$ under vacuum atmosphere. The wetting behavior of Al/SiC composite were analysed by SEM and XRD. The coating treatment on SiC improved wettability of Al melt on SiC considerably comparing to the non coated SiC. This improved wettability seems strongly concerned to the increase of chemical reactivity between coated layer and Al matrix. The improvement of wettability of Al melt on the Cu coated SiC was closely related to in the initial stage of reaction. The metallic film played an important role in reducing the interfacial free energy and breaking down the aluminum oxide film through the reaction with Al melt. The wetting behavior of the as-received SiC with Al melt was not uniform, indicated by the contact angles from less than $97^{\circ}$to more than $97^{\circ}$.

  • PDF

Effect of Volume Fraction on Mechanical and Fatigue Crack Growth Properties of SiC Particle Reinforced AL Alloy Composites (체적비가 $SiC_{p}$/AL 복합재료의 기계적 및 피로균열진전 특성에 미치는 영향)

  • Gwon, Jae-Do;An, Jeong-Ju;Mun, Yun-Bae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1301-1308
    • /
    • 1996
  • In order to save the energy and protect the environment, it were studied about ecomaterials with the developed countries as central figure. In the Metal Matrix Composites(MMCs), this trends appeared the development of the MMCs which had excellent mechanical properties in spite of the low volume fraction of reinforcement. Therefore, in this study, fatigue crack growth test, tensile and hardness test were conducted in order to investigate the mechanical and fatigue properties of 5 %, and 10 % $SiC_{p}$/Al composites. As the results, in the tensile and hardness test, tensile strength and hardness increased but fatigue crack growth rate decreased with $SiC_{p}$/Al volume fraction. And in the view of fatigue failured surface through the SEM, fatigue crack initiated around the SiC particle and in low $\Delta{K}$ regions, fatigue creck detoured the SiC particle but crack propagated through the SiC particle in the high $\DeltaK$ regions.

A Study on Aging and Wear Behaviors of Al-5Mg-X(Si, Cu, Ti)/SiCp Composites Fabricated by Pressureless Infiltration Method (무가압 침투에 의하여 제조된 Al-5Mg-X(Si, Cu, Ti)/SiCp 복합재료의 시효 및 마멸특성에 관한 연구)

  • Woo, Kee-Do;Kim, Sug-Won;Na, Hong-Suk;Moon, Ho-Jung
    • Journal of Korea Foundry Society
    • /
    • v.20 no.5
    • /
    • pp.300-306
    • /
    • 2000
  • The objective of this work was to investigate the effects of SiC particle size(50, 100 ${\mu}m$) and additional elements such as Si, Cu and Ti on aging behavior in Al-5Mg-X(Si,Cu,Ti)/SiCp composites fabricated by pressureless infiltration method using hardness and wear test, scanning electron microscopy(SEM) and differential scanning calorimetry(DSC). The peak aging time in Al-5Mg-X(Si, Cu, Ti)/SiCp(50, 100 ${\mu}m$) composites is shorter than Al-5Mg-0.3Si alloy.The peak aging time of 50 ${\mu}m$ SiC particle reinforced Al-5Mg-X(Si,Cu,Ti) composites is shorter than those of 100 ${\mu}m$ SiC particle reinforced of Al-5Mg-X(Si,Cu,Ti) composites. The Al-5Mg-0.3Si-0.1Cu-0.1Ti/SiCp(50 ${\mu}m$) composites aged at $180^{\circ}C$ has higher hardness and better wear resistance than any other aged composite.The aging effect is promoted by the addition of Si and Cu in Al-5Mg/SiCp composites, so the wear resistance of Al-5Mg/SiCp composites with Si and Cu elements is enhanced by the aging treatment.

  • PDF