• Title/Summary/Keyword: Si/Al 복합

Search Result 350, Processing Time 0.03 seconds

Manufacture of SiC-TiC System Composite by the Reaction-Bonded Sintering (반응결합 소결에 의한 SiC-TiC계 복합재료 제조)

  • 한인섭;김홍수;우상국;양준환;정윤중
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.8
    • /
    • pp.849-860
    • /
    • 1994
  • The microstructural evolution and crystalline phases of this infiltration of Ti+Al liquids in TiC, SiC, TiC+C, and SiC+C preforms have been investigated. As the Ti and Al mixing ratio in Ti+Al infiltrated liquid changes, the newly formed reaction products, which were reacted from the Ti+Al liquid with preforms, consisted of three major phases as Ti3AlC, Al2Ti4C2 or Al4C3. The TiC grain shape was changed to spheroid, when Ti3AlC was formed. In case of Al2Ti4C2 formation, the platelet grain was formed from the original TiC grain. When Al4C3 was formed, nodular or intergranular fine-grained Al4C3 was formed around the TiC grain, while the original TiC grain shape was not changed.

  • PDF

Statistical Life Prediction of Fatigue Crack Growth for SiC Whisker Reinforced Aluminium Composite (SiC 휘스커 보강 Al6061 복합재료의 통계학적 피로균열진전 수명예측)

  • 권재도;안정주;김상태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.475-485
    • /
    • 1995
  • In this study, statistical analysis of fatigue data which had obtained from respective 24 fatigue crack, was examined for SiC whisker reinforced aluminium 6061 composite alloy (SiC$_{w}$/A16061) and aluminium 6061 alloy. SiC volume fraction in composite alloy is 25%. The analysis results stress intensity factor range and 0.1 mm fatigue crack initiation life for SiC$_{w}$/A16061 composite & A16061 matrix are the log-normal distribution. And regression analysis by linear model, exponential model and multiplicative model were performed to find out the relationship between fatigue crack growth rate(da/dN) and stress intensity for find out the relationship between fatigue crack growth rate(da/dN) and stress intensity factor range(.DELTA.K) in the SiC$_{w}$/A16061 composite and examine the applicability of Paris' equation to SiC$_{w}$A16061 composite. Also computer simulation was performed for fatigue life prediction of SiC$_{w}$/A16061 composite using the statistical results of this study.udy.

Wear Behavior of Al/SiC Composites Fabricated by Thermal Spray Process (2) - Effect of Applied Load on Wear Behavior - (용사법에 의해 제조된 Al/SiC 복합재료의 마모거동 (2) - 작용하중의 영향 -)

  • Lee, Kwang Jin;Kim, Kyun Tak;Kim, Yeong Sik
    • Tribology and Lubricants
    • /
    • v.29 no.5
    • /
    • pp.298-303
    • /
    • 2013
  • In this work, the effect of applied load on the wear behavior of Al/SiC composites was studied. Al/SiC composites were fabricated following the thermal spray process. Dry sliding wear tests were performed on these composites under four different applied loads, i.e., 5, 10, 15, and 20 N. The wear behaviors of the composites under these applied loads were investigated using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Under applied loads of up to 15 N, the wear rates of Al/SiC composites decreased with an increase in the applied load because of the formation of an adhesion layer on the worn surface. However in the case of an applied load of 20 N, the wear rate was significantly high because the formation and fracture of the adhesion layer were repeated continuously. These results show that the wear behaviors of the tested composites are significantly influenced owing to the applied loads.

Wear Behavior of Al/SiC Composites Fabricated by Thermal Spray Process (1) - Effect of Sliding Speed on Wear Behavior - (용사법에 의해 제조된 Al/SiC 복합재료의 마모거동 (1) - 미끄럼 속도의 영향 -)

  • Lee, Kwang-Jin;Kim, Kyun-Tak;Kim, Yeong-Sik
    • Tribology and Lubricants
    • /
    • v.27 no.6
    • /
    • pp.351-355
    • /
    • 2011
  • Al/SiC composites were fabricated by thermal spray process, and the dry sliding wear tests were performed using the various sliding speed of 10, 30, 60 and 90 RPM through 1000 cycles. The applied load was 10 N and radius of wear track was 15 mm. Wear tracks on the Al/SiC composites were investigated using scanning electron microscope(SEM) and energy dispersive X-ray spectroscopy (EDS). In the case of sliding speed of 10 RPM, adhesive wear behavior caused by plastic deformation of composits surface was observed. In the cases of sliding speed of 30, 60, 90 RPM, abrasive wear behavior on the adhered layer formed by debris were observed. Through this study, it was found that the wear behavior of Al/SiC composites was mainly influenced by the sliding speed.

Microstructure and Mechanical Properties of P/M Processed 2XXX Al-${SiC}_{p}$ Composites (분말야금방법으로 제조된 2XXX Al-${SiC}_{p}$ 복합재료의 미세조직과 기계적 성질)

  • 심기삼
    • Journal of Powder Materials
    • /
    • v.4 no.1
    • /
    • pp.26-41
    • /
    • 1997
  • The powder metallurgy (P/M) processed 2009 and 2124 Al composites reinforced with SiC particulates were studied by focusing on the effect of consolidation temperature on the microstructural and mechanical Properties. The mechanical properties such as tensile properties and microhardness of the second phases were analysed in relation to the microstructures observed by a SEM and an optical microscope. The in situ fracture process study using SEM showed that the grain refinement and the removal of manganese-containing particles often observed in the 2124 Al-${SiC}_{p}$ composites were important for the improvement of the mechanical properties. This study offers an optimum consolidation temperature for the control of the manganese-containing particles in the 2124 Al-${SiC}_{p}$ composites that yields mechanical properties higher than those of the 2009 Al-${SiC}_{p}$ composites.

  • PDF

Microstructure and Tribological Characteristics of AlSi-Al$_2$O$_3$ Composite Coating Prepared by Plasma Spray (플라즈마 용사에 의한 AlSi-Al$_2$O$_3$ 복합재료 코팅층의 미세조직 및 마찰.마모특성)

  • Min Joon-Won;Yoo Seung-Eul;Kim Young-Jung;Suhr Dong-Soo
    • Journal of Welding and Joining
    • /
    • v.22 no.5
    • /
    • pp.46-52
    • /
    • 2004
  • AlSi-Al$_2$O$_3$ composite layer was prepared by plasma spray on steel substrate. The composite powder for plasma spray was prepared by simple mechanical blending. The wear resistance of the composite layers and matrix aluminum alloy were performed in terms of size distribution of ceramic particles. Friction coefficients of AlSi were decreased with incorporation of $Al_2$O$_3$. The tribological properties of coated layers were affected by the size of incorporated $Al_2$O$_3$ particle. The reinforcement of $Al_2$O$_3$ particle into aluminum alloy matrix decreased the friction coefficient as well as wear loss.

Formation of $Al_2O_3$-Composites by the Melt Oxidation of an AlZnMg-alloy (AlZnMg-합금의 용융산화에 의한 $Al_2O_3$-복합재료의 형성)

  • 김일수;김상호;강정윤
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.9
    • /
    • pp.985-994
    • /
    • 1996
  • The initiation and growth of $\alpha$-Al2O3/metal composites by the directed oxidation of molten commercial AlZnMg-alloy at 1223-1423K were investigated. Spontaneous bulk growth did not occur on the alloy alone. but the uniform initiation and growth of the composite were obtained by putting a thin layer of SiO2 particles on the surface of the alloy. Without SiO2 the external surface of the oxide layer was convered by MgO and MgAl2O4. But with the SiO2 reaction initiate the porous ZnO layers were found on the growth surface. The higher process temperature yielded a lower metal content. The oxidation product of $\alpha$-Al2O3 was found to be oriented with c-axis parallel to th growth direction. The growth rates increased with temperature and the apparent activation energy was 111.8 kJ/mol.

  • PDF

The effect of the addition of TiO2 in the preparation of (Al2O3-SiC)- SiC composite powder by SHS Process (SHS법을 이용한 복합분말(Al2O3-SiC) 제조시 TiO2첨가의 영향)

  • Yun, Gi-Seok;Yang, Beom-Seok;Lee, Jong-Hyeon;Won, Chang-Hwan
    • Korean Journal of Materials Research
    • /
    • v.12 no.1
    • /
    • pp.48-53
    • /
    • 2002
  • $Al_2O_3-SiC$ and $Al_2O_3-SiC$-TiC composite powders were prepared by SHS process using $SiO_2,\;TiO_2$, Al and C as raw materials. Aluminum powder was used as reducing agent of $SiO_2,\;TiO_2$ and activated charcoal was used as carbon source. In the preparations of $Al_2O_3-SiC$, the effect of the molar ratio in raw materials, compaction pressure, preheating temperature and atmosphere were investigated. The most important variable affecting the synthesis of $Al_2O_3-SiC$ was the molar ratio of carbon. Unreactants remained in the product among all conditions without compaction. The optimum condition in this reaction was $SiO_2$: Al: C=3: 5: 5.5, 80MPa compaction pressure under Preheating of $400^{\circ}C$ with Ar atmosphere. However there remains cabon in the optimum condition. The effect of $TiO_2$ as additive was investigated in the preparations of $Al_2O_3-SiC$. As a result of $TiO_2$ addition, $Al_2O_3-SiC$-TiC composite powder was prepared. The $Al_2O_3$ powder showed an angular type with 8 to $15{\mu}m$, and the particle size of SiC powder were 5~$10{\mu}m$ and TiC powder were 2 to $5{\mu}m$.