• Title/Summary/Keyword: Shuttle Tanker

Search Result 18, Processing Time 0.023 seconds

An Investigation on CPP Design Technology (CPP 설계기법 연구)

  • Song, In-Haeng;Lee, Tae-Goo;Han, Jae-Moon
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2007.09a
    • /
    • pp.68-73
    • /
    • 2007
  • CPP is widely utilized in RoPax ship, shuttle tanker etc. due to excellent manoeuvrability in low speed, and its usage is recently increased. The CPP was almost designed by CPP maker, and its performance seemed to be not fully optimized. In this study the whole CPP design procedure was reviewed and design technology of CPP was settled down including calculation of spindle torque and MOI, which was fully confirmed by KHI CPP maker. In order to confirm the CPP design technique, a CPP for shuttle tanker was designed and its performance was verified through series of model tests. The propeller efficiency and face cavitation performance of the CPP was well improved. This CPP design technology will be contributed to the optimization of performance and cooperation with CPP maker.

  • PDF

Experimental Study on Interaction of Side-by-Side Moored Vessels (병렬계류 선박의 동유체력 상호간섭에 관한 실험연구)

  • Kim, Jin-Ha;Hong, Sa-Young;Cho, Seok-Gyo;Choi, Yoon-Rak;Song, Myong-Jae;Kim, Duk-Su
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.208-213
    • /
    • 2003
  • Recently, Side-by-side mooring system of LNG FPSO and shuttle tanker is one of hot issues in offshore floating body dynamics, which requires accurate analysis of hydrodynamic interactions between side by side moored LNG FPSO and shuttle tanker than tandem moored vessels. This paper aims to investigate basic interaction characteristics of side-by-side moored multiple vessels both numerically and experimentally. A higher-order boundary element method combined with generalized nwde approach will be applied to analysis of motion and drift force of side by side moored multiple-body. Model tests were carried out for the same multiple floating bodies in regular and irregular waves. Motion responses and drift forces of vessels for two mooring situation(coupled & uncoupled) were compared with those of calculations. Discussions will be highlighted on applicability of numerical method to prediction of sophisticated multi-body interaction problem of which motion behavior is very important to analysis of mooring dynamics of deep sea floating bodies.

  • PDF

Estimation of Current Loads on Offshore Vessels Using CFD

  • Yuck Rae-Hyung;Choi Hang-Soon;Hong Sa-Young
    • Journal of Ship and Ocean Technology
    • /
    • v.10 no.1
    • /
    • pp.27-37
    • /
    • 2006
  • Current loads acting on offshore vessels are important for predicting the hydrodynamic and structural responses of the vessels. It is also true for analyzing the behavior of moored systems under the action of ocean current. Unfortunately there are few standardized current load coefficients for offshore vessels and it is extremely difficult to be applied to arbitrary hull shapes, if any. Therefore current load coefficients for three hull shapes are calculated in this study using a CFD code, which is well known in the shipbuilding industry. In order to validate the present approach, a typical VLCC is taken as numerical example and resulting current coefficients are compared with experiment together with the OCIMF data. The comparison shows a good agreement in the qualitative sense. Two additional models considered herein are a shuttle tanker and a FPSO under deepwater condition $(WD/T{\geq}6)$. The present numerical approach may be utilized for practical design of offshore vessels.

Computation of the Linear and Nonlinear Hydrodynamic Forces on Slender Ships with Zero Speed in Waves : Infinite-Depth Case (정지 세장선의 파랑 중 선형 및 비선형 유체력 계산 : 무한 수심의 경우)

  • Yong-Hwan Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.2
    • /
    • pp.1-13
    • /
    • 2000
  • In the present paper, an infinite-depth unified theory is applied to the computation of the linear and second-order hydrodynamic forces on slender bodies. No forward speed is assumed, which is valid for some types of ships, like FPSOs and shuttle tankers. Strip theory solution, which is essential for the extension to theory is extended to unified theory, was obtained using NIIRD program developed at MIT. The linear theory is extended to the computation of the second-order mean-drift forces and moment. Furthermore, Aranha's formular is applied to the prediction of wave drift damping coefficients. From this study, it is proved that unified theory provides an accuracy comparable with 3D panel method for the second-order forces as well as the linear solution with much less computational effort.

  • PDF

선박 및 해양구조물의 개발 현황

  • Kim, Hyeon-Su
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.47 no.3
    • /
    • pp.3-7
    • /
    • 2010
  • 국내 조선소와 학교, 연구소에서 1990년대 중반 이전의 빙해선박에 대한 연구는 거의 이루어지지 않았다고 해도 과언이 아니다. 하지만 2000년대 초반부터 러시아가 St. Petersburg항을 통해 본격적으로 원유를 수출하기 시작하면서 내빙선 시장이 호황을 맞이하게 되었고 빙해선박 특히 내빙선박에 대한 관심이 집중되었다. 당시에 한국의 조선소들은 FMA rule 상의 엔진 출력이 과도한 것을 인지하고, 적정한 엔진 사양을 파악하기 위한 공격적인 연구개발로 ICE Class 1A, 1B, 1C의 선박을 상당히 많이 수주하여 선주에게 인도하였다. 또한 Ice belt의 구조적인 보강을 하기위한 설계와 연구가 활발히 진행되었다. 내빙선에 이어 쇄빙선의 연구에 관심을 집중시킨 선박은 최근 실해역에서 활동 중인 연구 조사선 "아라온"호 이다. 아라온호는 설계와 건조가 국내 조선소에서 이루어졌으며, 학계와 조선소 및 연구소에 쇄빙선에 대한 관심을 불러 일으켰다. 이와 비슷한 시기에 삼성 중공업에서 세계 최대 쇄빙선인 70K shuttle tanker를 수주 및 인도하면서 대형 쇄빙선 시장이 개척되어 국내외 조선소의 큰 관심을 불러일으키고 있다. 쇄빙 기술이 응용된 선박으로 Drill ship과 LNG FPSO등이 수주되어 현재 설계를 진행 중이다. 가장 최근에 현대중공업에서 수주한 원통형 FPSO의 경우 북해 지역에 투입을 목적으로 언론에 발표된 것과는 달리 발주처와 유럽의 관련 연구기관에서는 러시아 유전지역 투입을 염두에 두고 쇄빙관련 연구를 진행한 것으로 파악되고 있다. 본 기고에서는 이러한 빙해선박의 개발 및 건조 사례 현황을 기술하고, 향후 수주가능성이 있는 쇄빙선 분야와 조선소의 대응 전략 등에 대해서 정리해 보고자 한다.

  • PDF

Parametric Study for Helideck Design using Finite Element Analysis (헬리데크 설계를 위한 유한요소해석 기반 매개변수연구)

  • Park, Doo-Hwan;Park, Yong-Jun;Park, Joo-Sin;Kim, Jeong-Hyeon;Kweon, Byoung-Cheol;Lee, Jae-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.411-422
    • /
    • 2014
  • A helideck is a very valuable offshore structure for the take-off and landing of a helicopter. In order to design a helideck, the design parameters and various loads defined by the regulations related to the design of a helideck should be applied. In this study, a risk analysis was performed based on the helicopter accidents for seven years, and the frequency and possible reasons for accidents involving helidecks were investigated. In addition, a finite element analysis of a steel helideck mounted on the upper deck of a ship (shuttle tanker) was performed with the load that should be considered when designing a helideck. Based on the results, a parametric study of helideck was carried out by applying a variety of design parameters, and an improved helideck design was presented. This improved helideck reduced the steel used by up to 24% compared to the initial helideck design, and the results of a finite element analysis were analyzed and compared with those of the initial analysis.

Motion and sloshing analysis for new concept of offshore storage unit

  • Ha, Mun-Keun;Kim, Mun-Sung;Paik, Bu-Keun;Park, Chung-Hum
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.189-195
    • /
    • 2000
  • New concept of LNG-FPSO ship with moonpool and bilge step in bottom is considered and investigated in the point of motion reduction and sloshing phenomena of the cargo and operation tanks. The cargo capacity of the ship of which principle dimensions is L x B x D x t(design) =270.0 x 51.0 x 32.32 x 13.7(m) 16K at 98% loading condition. The two moonpools and rectangular step at bilge part are setted up specially for getting the effect of motion decrease. For the motion analysis, linearized three dimensional diffraction theory with the simplified boundary conditions is used. The six-degree of freedom coupled motion responses are calculated for the LNG-FPSO ship. Viscous effects on the roll motion responses of a vessel are taken into account in this calculation program using an empirical formula suggested by Ikeda, Himeno and Tanaka is used. The case study for the moonpool size had been carried out by theoretical estimation and experimental method. For the optimization of the moonpool size and effect of the step, 9 cases of its size and with and without step are considered. From the results of calculation and experiment, it can be concluded that this designed LNG-FPSO ship have possibility to carry out her missions in the rough sea as for the owner's demand waves condition. The motion responses, especially roll motion, for the designed LNG-FPSO ship are much lower than those of another drillship and shuttle tanker and limit criterions are satisfied. For the check of the cargo tank and operation tank sizes we have performed sloshing analysis in the irregular waves which focuses on the pressure distribution on the tank wall and the time history of pressure and free surface for No.2 and No5. tanks of LNG-FPSO with chamfers. Finally we got the tank size which has no resonance and no impact pressure in all filling in the bow quartering and beam sea.

  • PDF

Motion and Sloshing Analysis for New Concept of Offshore Storage Unit

  • Ha, Mun-Keun;Kim, Mun-Sung;Paik, Bu-Keun;Park, Chung-Hum
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2002
  • 본 논문에서는 선체 하부에 moonpool과 bilge step을 장착한 새로운 개념으의 LNG-FPSO를 운동감소와 cargo, operation tank의 슬로싱 현상의 관점에서 기술하였다. LNG-FPSO의 주요제원은$L\times B\times D\times t(design)=270.0\times51.0\times32.32\times13.7(m)$ 이고 적용조건은 total corgo capacity of 161KT at 98% loading condition 이다. LNG-FPSO의 운동감소의 목적으로 2개의 moonpool과 선체하부 bilge 부분에 사각 step을 장착하였다. LNG-FPSO의 운동해석을 위해 단순화된 경계조건을 만족하는 선형화된 3차원 diffraction theory를 사용하였고 LNG-FPSO의 연성된 6-자유도 운동응답을 계산하였다. LNG-FPSO의 정확한 Roll 운동을 추정하기 위해 점성효과는 Himeno(1981)가 제안한 경험식을 사용하였다. Moonpool의 크기에 따른 운동감소의 경향을 파악하기 위해 이론적 계산과 실험적 방법으로 수행하였다. Moonpool 크기와 bilge step의 효과를 최적화하기 위해 총9가지의 case를 설정하였다. 이론 및 실험 결과로부터 본 LNG-FPSO는 moonpool과 bilge step의 장착으로 인한 감쇠력의 증가로 운동성능이 우수하다. 본 LNG-FPSO의 운동 응답중, 특별히 roll 운동이 다른 drillship, shuttle tanker등의 선박과 비교하여 상당히 작았고 이는 moonpool과 blige step의 장착으로 인한 효과로 판단된다. Cargo tank와 operation tank 크기를 검토 하기 위해 불규칙 해상중 sloshing 해석을 chamfer를 갖는 LNG-FPSO의 No.2, No.5 tank 벽면의 압력 분포와 자유표면의 time history에 초점을 맞추어 수행하였다. 최종적으로 tank 크기를 최적화 하였고 최적화된 tank는 선수사파와 횡파상태의 모든 filling에서 공진현상과 충격압력이 발생하지 않음을 확인하였다.