• Title/Summary/Keyword: Shut-off Valve

Search Result 53, Processing Time 0.016 seconds

Mechanism Diagnosis and Avoidance Design on Transient Acoustic Vibration of Reheater Water Supply Piping in Supercritical Boiler (초임계 보일러 재열기 급수 공급배관의 과도 음향진동 진단 및 회피설계)

  • Kim, Yeon-Whan;Bae, Yong-Chae;Kim, Jae-Won;Lee, Doo-Young;Heo, Hae-Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.5
    • /
    • pp.385-393
    • /
    • 2013
  • In this paper, the mechanism identification and the avoidance measures on the phenomena of transient acoustic vibration amplified at the water-supply piping system to regulate the steam temperature of the boiler reheater in 500MW class supercritical power plant are presented. The pressure pulsation waves induced by the impeller passing of two feed-water pumps with five blades are coincident with the local acoustic modes of boiler reheater water-supply piping system. There are the phenomena amplified at the peaks of 5X, 10X, 15X and 20X in spectrums of piping vibration, sound pressure, and the feed-water's pressure pulsation waves. The shut-off device is installed in the piping system for the interception of pressure pulsation waves transmitted from two feed-water pumps and the modified design change of the piping layout is applied for the acoustic resonance avoidance. The acoustic natural frequencies are separated from the harmonics of pressure pulsation waves induced by the pump impellers passing through the design change of the span length. The acoustic vibration is gone by resonance avoidance measures. As a result, more than 20 dBA reduction is achieved from 100 dBA to 80 dBA.

A Study on the Water Hammer Arrester Considering the Way of First Assessment Test (최초의 평가시험 방법을 고려한 수격흡수기의 장치에 관한 연구)

  • Yeum, Moon-Cheon;Han, Yong-Taek
    • Fire Science and Engineering
    • /
    • v.29 no.1
    • /
    • pp.53-59
    • /
    • 2015
  • Water hammering created by an unsteady flow in pipeline systems can cause excessive change in pressure, vibration, and noise. So, water hammer analysis is very important for limiting the damage caused to pipeline, pump and valve systems by operation conditions. On the other hand, water hammer arrester has been manufactured and used in order to minimize the damage caused by water hammering phenomenon in domestic, and it has been produced and installed as the low cost-oriented because of being no separate standard in the meanwhile. Therefore, our research team investigated about the standardization of water hammer arrester performance through the various methods, such as test methods for verification of one pipe, assuming the occurrence of water hammer in a water-based fire extinguishing system, separated for opening impact pressure and shut off impact pressure and for a branch pipe in order to make guideline for water hammer arrester performance. And finally, verified the performance of the water hammer pressure as the simple mechanical way using the U-shaped pipe and a test weight, so KFI standards for the water hammer arrester could be established.

Fire-fighting Pump Approval Standard for Fire-fighting Trucks with an Additional Positive Displacement Pump (용적형 펌프를 추가한 소방자동차용 소방펌프의 성능 인정기준에 관한 연구)

  • Han, Yong-Taek;Sung, Ki-Chan;Min, Se-Hong
    • Fire Science and Engineering
    • /
    • v.30 no.1
    • /
    • pp.104-110
    • /
    • 2016
  • Positive displacement pumps with high pressure and water capacity are used large fires in various high-rise buildings. This study provides information for a performance approval standard of fire pumps for fire trucks based on centrifugal pump standards enacted in 2012. An experiment was conducted with a positive displacement pump for three levels of performance from the approval standard (V-1, 2, and 3). The efficiency of the pump was included in the reference, which requires the approval of 65% performance, the same as a centrifugal pump. The water pressure is between 1.5 and 2.5 MPa, and the required flow rate was established as at least $0.31m^3/min$ and up to $3.0m^3/min$. A relief valve was added to adjust the shut-off pressure due to the structural characteristics of the positive displacement pump. A strainer was also installed to prevent damage to the inside of the pump due to foreign matter. However, the strainer includes a difference from the positive displacement pump to operate without a vacuum pump and the centrifugal pump. This is due to the additional approval standard portion of the positive displacement pump, which is expected to be selected for more variety of fire-fighting equipment and proactive responses to fire suppression in a high-rise buildings and large fires. In conclusion, this approval standard was enacted in January 2016.