• Title/Summary/Keyword: Shrinkage ring

Search Result 55, Processing Time 0.028 seconds

Effect of Board Thickness and Ring Angle on Press - drying for Heartwood and Sapwood of Quercus acutissima C. (상수리나무 심재(心材)와 변재판재(邊材板材)의 두께와 연륜각도(年輪角度)가 열판건조(熱板乾燥)에 미치는 영향(影響))

  • Lee, Nam-Ho;Jung, Hee-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.67-78
    • /
    • 1987
  • This study was designed to investigate the effect of board thickness and ring angle on the characteristics including internal check. ring failure, surface check, end check, collapse, thickness shrinkage and width shrinkage of press-drying. The exprimental materials of 6mm-. 9mm- and 12mm-thick board were taken from heartwood and sapwood of oak (Quercus acutissima Carr.) respectively. And boards were numbered according to position in the log(No. 1 to No. 4 for heartwood :md No. 9 for sapwood). Press-drying was at $145^{\circ}C$ platen temperature and 3.5kg/$Cm^2$ platen pressure. The results of this study were summarized as follows. 1. Drying rates for sapwood materials were greater than those for heartwood materials. And drying rates for thinner materials were greater than those for thicker materials. 2. The thinner boards were. the severer surface checking developed in the heartwood materials, and surface checking for heartwood materials had no tendency in board position for the same thickness. Sapwood materials were completely free from surface checking. 3. End checking for heartwood materials had no tendency in board position. The greater deviation of ring angle from perfectly edge-grained was, the severer and checking developed in the sapwood materials. But end checking did not occur in 6mm-thick sapwood materials. 4. The greater deviation of ring angle from perfectly edge-grained was, the severer end checking developed for heartwood and sapwood materials. As board thickness increased, maternal checking developed more severely for heartwood and sapweed materials. 5. For heartwood materials, ring failure, reduced with increasing deviation of ring angle from perfectly edge-grained except 12mm-thick material and showed no significant difference attributable to board thickness. Sapwood materials were completely free from ring failure. 6. For heartwood and sapwood materials, collapse was slight and showed no significant differences attributable to both board thickness and board position. 7. As deviation of ring angle from perfectly edge-grained increased, shrinkage of board thickness decreased for heartwood and sapwood materials. 8. Shrinkage of board width showed no significant differences attributable to both board thickness and board position for heartwood and sapweed materials.

  • PDF

Statistical Verification of Acoustic Emissions Detected during Polymerization Shrinkage of Resin Restoration in Dental Ring (치아/복합레진 수복부의 중합 수축시 검출된 음향방출의 통계적 검증)

  • Gu, Ja-Uk;Choi, Nak-Sam;Arakawa, Kazuo
    • Composites Research
    • /
    • v.23 no.6
    • /
    • pp.39-46
    • /
    • 2010
  • Acoustic emission (AE) signals are detected during the polymerization shrinkage of composite resin restoration in artificial dental ring according to various interfacial treatment conditions. AE amplitudes and the number of AE hit events were compared through the non-parametric statistics of Mann-Whitney method and Kruskal-Wallis method. The AE amplitudes detected from the PMMA and human tooth ring specimens were not significantly different according to adhesive conditions. The stainless steel ring specimen, meanwhile, had a difference in AE amplitude (p<0.05). The quantity of hit events for the human molar dentin specimens of the good bonding state was much less than that for the steel ring specimen but more than that for the PMMA ring specimen. For the same substrate, the better the bonding state, the less the AE hit events (p<0.05). The degree of marginal disintegration measured by SEM was proportional to the amount of AE hit events detected.

Polymerization Shrinkage Behavior Measured by Digital Image Correlation for Methacrylate-based and Silorane-based Composites During Dental Restoration (디지털 이미지 상관법을 이용한 Methacrylate기질과 Silorane기질 복합레진의 치아 수복 시 중합수축거동)

  • Park, Jung-Hoon;Choi, Nak-Sam
    • Composites Research
    • /
    • v.33 no.3
    • /
    • pp.125-132
    • /
    • 2020
  • The polymerization shrinkage behavior of dimethacrylate-based composite (Clearfil AP-X, Kuraray) and silorane-based composite (Filtek P90, 3M ESPE) used for dental composite restorations was measured using digital image correlation method. The stress distribution on the surface of specimen was calculated by finite element analysis with equivalent elastic modulus and was compared with the measured shrinkage distribution. Camera images were monitored by a CCD camera during and after the irradiation of light. As a result of the DIC analysis, a non-uniform shrinkage distribution was observed in both composite resins, and the resin core inside the ring specimen had free flowability, leading to in greater shrinkage strain than the resin/ring interfacial region. It was observed that as the distance from the center of the resin increased, the radial average shrinkage strain decreased. The radial average shrinkage strain during light irradiation occurred to be 33% for P90 and 57% for AP-X of the entire strain at the end of the test. The shrinkage behavior of P90 and AP-X was measured to be significantly different from each other during light irradiation. In the resin near the resin/ring interface, it was confirmed that the tensile strain rapidly formed to increase after light irradiation, causing a tensile stressed, interface weak.

Cracking of Fiber-Reinforced Self-Compacting Concrete due to Restrained Shrinkage

  • Kwon, Seung-Hee;Ferron, Raissa P.;Akkaya, Yilmaz;Shah, Surendra P.
    • International Journal of Concrete Structures and Materials
    • /
    • v.1 no.1
    • /
    • pp.3-9
    • /
    • 2007
  • Fiber-reinforced self-compacting concrete (FRSCC) is a new type of concrete mix that can mitigate two opposing weaknesses: poor workability in fiber-reinforced concrete and cracking resistance in plain SCC concrete. This study focused on early-age cracking of FRSCC due to restrained drying shrinkage, one of the most common causes of cracking. In order to investigate the effect of fiber on shrinkage cracking of FRSCC, ring shrinkage tests were performed for polypropylene and steel fiber-reinforced SCC. In addition, finite element analyses for those specimens were carried out considering drying shrinkage based on moisture diffusion, creep, cracking resistance of concrete, and the effect of fiber. The analysis results were verified via a comparison between the measured and calculated crack width. From the test and analysis results, the effectiveness of fiber with respect to reducing cracking was confirmed and some salient features on the shrinkage cracking of FRSCC were obtained.

Autogenous and Drying Shrinkage Behavior of Ultra-High-Strength Concrete at Early Ages (설계강도 120MPa 초고강도 콘크리트의 초기재령 자기수축 특성 연구)

  • Kim Ji Won;Sohn Yu Shin;Lee Joo Ha;Kim Gyu Dong;Lee Seung Hoon;Yoon Young Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.293-296
    • /
    • 2004
  • In this study, to investigate autogenous shrinkage behavior of 120MPa UHSC at early ages, free and restrained shrinkage tests are performed for various strength levels(50MPa, 80MPa, 120MPa). For 120MPa, the effect of fly ash on autogenous shrinkage was also investigated. In order to assess the potential for early-age cracking in concrete and a mixtures susceptibility to shrinkage cracking, restrained ring test was carried out. Test results show that autogenous shrinkage of UHSC was much higher than that of HSC, VHSC and fly ash delayed cracking age in UHSC by decreasing autogenous shrinkage.

  • PDF

A Study on the Development of Marine Turbocharger Nozzle Ring using Investment Casting (인베스트먼트법을 이용한 선박용 대형 터보차져 노즐링 개발을 위한 연구)

  • Hwang, Seong Ju;Lee, Man Gil;Jung, Jin Wook;Kwon, Soon Kook;Lee, Choon Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.8
    • /
    • pp.671-675
    • /
    • 2014
  • Nozzle ring is an important part of turbocharger which is applied to today's most diesel engines. Turbo charger nozzle ring is difficult to process and takes a high cost and a long time relatively. For this reason, it is largely produced by using a precision casting. Investment method, the representative technology of precision casting, has excellent dimensional accuracy and can produce complex shapes relatively easily. However, it is difficult to avoid the casting defects such as shrinkage cavity and short shot. This study is to predict the casting defects which could be occurred during the investment method by use of finite element analysis software and to design the process and mold of the marine turbocharger nozzle ring.

Investigation of Shrinkage around Small Box of Short Span Slab (단경간 슬래브 중앙 소형박스(개구부)주변의 건조수축 거동 조사 연구)

  • Kim, Sang-Yeon
    • Land and Housing Review
    • /
    • v.7 no.4
    • /
    • pp.323-328
    • /
    • 2016
  • There are small box opening for inserting of electric lamp box in the slab of apartment. Around this box opening, we normally use the detailing of WWF or plastic ring strengthening to protect cracks induced by shrinkage. The shrinkage amount of slab box around was measured and analysed in order to consider validity of these strengthening methods and to find out economical alternative. Alternative of strengthening methods are normally used strengthening methods in construction companies, which are WWF strengthening, plastic ring strengthening and no strengthening methods. The shrinkage amount was measured using contact guage at the spot of tip attached around the box on slab of small area unit apartment which have small exclusive area below $59m^2$. Measured data shows that there are no big differences between all the 3 strengthening methods and Measure data range is $-264{\mu}{\varepsilon}{\sim}+216{\mu}{\varepsilon}$. Measured shrinkage is on trend slightly increase till 3~5weeks after removal of forms and then decrease. But amount of shrinkage are very low for all the slabs and there are no probabilities of concrete crack by shrinkage.

Shrinkage and crack characteristics of filling materials for precast member joint under various restraint conditions

  • Lim, Dong-Kyu;Choi, Myoung-Sung
    • Advances in concrete construction
    • /
    • v.14 no.2
    • /
    • pp.139-151
    • /
    • 2022
  • Filling materials poured into precast member joint are subjected to restraint stress by the precast member and joint reinforcement. The induced stress will likely cause cracks at early ages and performance degradation of the entire structure. To prevent these issues and design reasonable joints, it is very important to analyze and evaluate the restrained shrinkage cracks of filling materials at various restraint conditions. In this study, a new time zero-that defines the shrinkage development time of a filling material-is proposed to calculate the accurate amount of shrinkage. The tensile stresses and strengths at different ages were compared through the ring test (AASHTO PP34) to evaluate the crack potential of the restrained filling materials at various restraint conditions. The mixture which contained an expansive additive and a shrinkage reducing agent exhibited high resistance to shrinkage cracking owing to the high-drying shrinkage compensation effect. The high-performance, fiber-reinforced cement composite, and ultra-high-performance, fiber-reinforced cement composite yielded very high resistance to shrinkage and cracking owing to the pull-out property of steel fibers. To this end, multiple nonlinear regression analyses were conducted based on the test results. Accordingly, a modified tensile stress equation that considered both the geometric shape of the specimen and the intrinsic properties of the material is proposed.

Interfacial fracture analysis of human tooth/composite resin restoration using acoustic emission (음향방출법을 이용한 치아/복합레진 수복재의 계면부 파괴해석)

  • Gu, Ja-Uk;Choi, Nak-Sam;Arakawa, Kazuo
    • Composites Research
    • /
    • v.22 no.6
    • /
    • pp.45-51
    • /
    • 2009
  • The marginal integrity at the composite resin-tooth interface has been analyzed in real time through acoustic emission (AE) monitoring during the polymerization shrinkage of composite resin subjected to the light exposure. It was found that AE signals were generated by the polymerization shrinkage. Most AE hit events showed a blast type signal having the principal frequency band of 100-200kHz. Bad bonding states were indicated by many hit events in the initial curing period of 1 minute with high contraction rate. The quantity of hit events for the human molar dentin specimen was much less than that for the steel ring specimen but more than that for the PMMA ring specimen. The better the bonding state, the less the AE hit events. The AE characteristics were related with the tensile crack propagation occurring in the adhesive region between the composite resin and the ring substrate as well as the compressive behavior of the ring substrate, which could be used for a nondestructive characterization of the marginal disintegrative fracture of the dental restoration.

Physical Property of PTT/Wool/Modal Air Vortex Yarns for High Emotional Garment (고감성 의류용 PTT/울/모달 에어 볼텍스 복합사의 물성)

  • Kim, Hyunah
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.39 no.6
    • /
    • pp.877-884
    • /
    • 2015
  • Polytrimethylene Terephthalate (PTT) is an eco-fiber with good elastic properties; however, it requires more detailed studies related to spinnability according to blending of various kinds of fibers. The evolution of spinning technology was focused on improved productivity with good quality; in addition, air vortex spinning was recently invented and applied on the spinning factory as the facility with good productivity and quality. More detail spinning technology according to the blending of various kinds of fibers on the air vortex spinning system is required to obtain good quality yarns for high emotional fabrics. In this paper, the physical properties of air vortex, compact and ring staple yarns using PTT/wool/modal blend fibers were investigated with yarn structure to promote high functional PTT that includes fabrics for high emotional garments. Unevenness of air vortex yarns was higher than those of compact and ring yarns; in addition, imperfections were greater than those of compact and ring yarns, which was attributed to a fascinated vortex yarn structure. Tenacity and breaking strain of air vortex yarns were lower than those of compact and ring yarns, caused by higher unevenness and more imperfections of air vortex yarns compared to compact and ring yarns. Vortex yarns showed the highest initial modulus and ring yarns showed the lowest ones which results in a stiff tactile feeling of air vortex yarns in regards to the initial modulus of yarns. Dry and wet thermal shrinkages of air vortex yarns were lower than ring yarns. Good shape retention of vortex yarns was estimated due to low thermal shrinkage.