• Title/Summary/Keyword: Shrinkage Reduction Agent

Search Result 60, Processing Time 0.021 seconds

Preparation and Properties of Low-shrinkage Polymer Concretes (저수축형 폴리머 콘크리트의 제조 및 물리.역학적 특성)

  • 황진하;연구석;이윤수;이기원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.321-326
    • /
    • 2000
  • Many different polymer based concrete materials are known today, but the large setting or hardening shrinkage of polymer concrete is a problem to overcome in their practical applications. The setting shrinkage reaches about five to ren times he drying shrinkage ordinary cement concrete, i.e, 50 to $60\times10^{-4}$. This paper deals with a reduction in the hardening shrinkage of unsaturated polyester resin concrete which is treated with respect to shrinkage-reducing agent content, S/a ratio and catalyst content, and tested for length change during hardening, and flexural and compressive strength. It is show that the change of shrinkage-reducing agent content and S/a ratio affected the length change of the unsaturated polyester resin concrete during hardening.

  • PDF

Analysis on Shrinkage Properties of High Performance Concrete According to Mock-Up Test (고성능 콘크리트의 Mock-Up 시험에 의한 수축특성 분석)

  • Koh Kyoung Taek;Jin Hu Lin;Ryu Gum Sung;Hwang Yin Seong;Kim Do Gyum;Han Cheon Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.545-548
    • /
    • 2004
  • This paper is to investigate the shrinkage properties of high performance concrete (HPC) with mixture adjustment by using mock-up specimens. HPC with mixture adjustment needed a higher dosage of SP agent due to fluidity reduction and a larger dosage of AE agent due to the reduction of air content. Setting time of HPC with mixture adjustment exhibited earlier than that of control HPC by as much as 6 hours. HPC with mixture adjustment gained more than 70MPa of compressive strength. Autogenous shrinkage of Control HPC was found to be $-340\times40^{-6}$ at 49days when the expansion value by thermal effect was excluded and HPC with mixture adjustment $-175\times10^{-6}$, which was the half of the value of control HPC. Drying shrinkage of center section of HPC with mixture adjustment showed similar tendency with autogenous shrinkage because of no internal moisture movement, while surface section had larger drying shrinkage. The specimen embedded with reinforcing bar had smaller deformation caused by confinement of reinforcing bar.

  • PDF

Study on the Engineering Properties of 150MPa Ultra-high Strength Concrete

  • Jung, Sang-Jin;Yoshihiro, Masuda;Kim, Woo-Jae;Lee, Young-Ran;Kim, Seong-Deok;Ha, Jung-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.4
    • /
    • pp.113-122
    • /
    • 2010
  • In this study, 150MPa ultra-high-strength concrete was manufactured, and its performance was reviewed. As technically meaningful autogenous shrinkage reportedly occurs at a W/B ratio of 40% or less, although it occurs in all concrete regardless of the W/B ratio, the effects of the use of expansive admixture and shrinkage reducer, or of the friction and restraint of forms that may result in the effective reduction of autogenous shrinkage, were reviewed. As a result, considering the flow and strength characteristics, it was found that the slump flow time was shorter with expansive admixture, and shortest with shrinkage reducer. All specimens with $30kg/m^3$ expansive admixture showed high strength at early material age. Their strength decreased due to the expansion cracks when there was excessive use of expansive admixture, and the use of shrinkage reducer did not influence the change in the strength according to the material age. The expansive admixture had a shrinkage reduction effect of 80%, while the shrinkage reducer had a shrinkage reduction effect of 30%, indicating that the expansive admixture had a stronger effect. It seems that mixing the two will have a synergistic effect. The shrinkage reduction rate was highest when the W/B ratio was 20%. The form suppressed the expansion and shrinkage at the early period, and the demolding time did not significantly influence the shrinkage. The results of the study showed that the excessive addition of expansive admixture leads to expansion cracks, and the expansive admixture and shrinkage reducer have the highest shrinkage reduction effect when they are mixed.

A Study on the Reduction of Autogenous Shrinkage of Hgh-Strength Concrete using Bean Oil (콩기름을 사용한 고강도 콘크리트의 자기수축 특성 분석에 관한 연구)

  • Song, Ri-Fan;Hong, Seak-Min;Lee, Chung-Sub;Lim, Choon-Goun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.101-105
    • /
    • 2009
  • The purpose of this study is to reduce autogenous shrinkage of high-strength concrete. Previous studies were investigated to measure the effects of reductions to autogenous shrinkage when applying bean oil to concrete. The results of the study showed that as the mixture rate of BO increased, fluidity decreased and air quantity decreased slightly. In early age, compressed strength increased compared to Plain while decreased in long-term age. As an autogenous shrinkage characteristic, reduction effect increased according to increase in mixture rate. When mixture rate is 1%, approximately 30% decreased compared to Plain in BO. At 2%, BO decreased by about 32%. In addition, in the case of BO, autogenous shrinkage was shown to decrease compared to expansive additive and shrinkage-reducing agent.

  • PDF

Autogenous Shrinkage of High Strength Mortar According to Stimulant and Emulsified Waste Oil (자극제 및 유화처리에 따른 폐식용유 사용 고강도 모르타르의 자기수축 저감 특성)

  • Han, Sang-Yoon;Son, Ho-Jung;Lee, Dong-Gyu;Jeon, Chung-Keun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.81-82
    • /
    • 2011
  • This paper is to compare and analyze WOE created by emulsifying waste oil & WOES added by stimulant with the existing SR in order to solve the problem of strength and reduction in fluidity occurring in time of the use of waste oil to reduce the autogenous shrinkage of high strength mortar. As experimental results, in case of WOE, there almost never happened a drop in fluidity at 1% replacement and compressive strength also showed the strength value similar to Plain. On the other hand, the effect of strength improvement consequent upon the use of stimulant was found to be insufficient. The change of autogenous shrinkage generally showed a better reduction effect in shrinkage comparing to Plain. In case of WOE1, reduction effect in autogenous shrinkage was found to be more excellent than the existing SR. Accordingly, WOE1 is analyzed to be desirable if reduction in autogenous shrinkage, strength & up to the aspect of fluidity are taken into consideration.

  • PDF

Properties on the Shrinkage of High Performance Concrete Using Expansive Additive and Shrinkage Reducing Agent (팽창재 및 수축저감제를 이용한 고성능 콘크리트의 수축특성)

  • Han, Cheon-Goo;Kim, Sung-Wook;Koh, Kyoung-Taek;Pei, Zheng-Lie
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.785-793
    • /
    • 2003
  • This study is intended to analyze the effectiveness of expansive additive, shrinkage reducing agent and combination of the two to reduce the autogenous and drying shrinkage of high performance concrete using mineral admixture such as fly ash, blast furnace slag powder and silica fume. According to results, when expansive additive and shrinkage reducing agent are mixed within an appropriate mixing ratio, fluidity and air content are not influenced, and the enhancement of compressive strength is favorable at the age of 91 and 180days. At the mixing ratio of expansive additive of 5% and 10%, the autogenous and drying shrinkage is reduced by 32∼68% and 25∼49% respectively in comparison with plain concrete. And they are reduced by 18∼34% and 16∼26% respectively at the mixing ratio of shrinkage reducing agent of 0.5% and 1.0%, compared with plain concrete. The mixture of EA-SR combined with expansive additive and shrinkage reducing agent is most effective for reduction of shrinkage. Therefore, it is considered that the using method in combination with expansive additive and shrinkage reducing agent is effective to reduce the shrinkage of high performance concrete using mineral admixture such as fly ash, blast slag powder and silica fume.

A Study on the Drying Shrinkage and Carbonation High Flowing Concrete using Viscosity Agent (증점제를 사용한 고유동콘크리트의 건조수축 및 중성화에 관한 연구)

  • Kwon, Young-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.3
    • /
    • pp.121-126
    • /
    • 2003
  • This study investigated about several mix factors came up to drying shrinkage and carbonation of high flowing concrete using viscosity. The results are as follows; Drying shrinkage ratio of high flowing concrete using viscosity showed higher for early age, but lower than normal concrete as long age. Also, drying shrinkage ratio and reduction ratio of mass showed higher and relative dynamic modulus of elasticty showed lower as W/C was higher generally. And in case of high flowing concrete using viscosity, carbonation wasn't confirmed without the kinds of cement and viscosity except 50C.

An Experimental Study on Durability of Mortar and Concrete using Shrinkage reducing typed Superplasticizer (수축저감형 혼화제를 이용한 모르타르 및 콘크리트의 물리적 특성에 관한 기초적 연구)

  • Woo, Hyung-Min;Park, Hee-Gon;Lee, Young-Do
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.6
    • /
    • pp.561-569
    • /
    • 2016
  • Concrete is cheap, easy to deal with, and the quality is satisfactory. Also, it is one of the easiest materials to get because chemical composition of cement is similar to chemical composition of surface. On the other hand, it is so vulnerable to transform because of weak binding capacity and low binding energy that it produces cracks. Cracks decline durability, usability, safety of structures and damage exterior. In order to decline drying shrinkage crack, this study used shrinkage reducing typed Superplasticizer, which is combination of and water-reducing agent for convenience, different with existing study using AE agent, water-reducing agent, shrinkage reducing agent,. Considering SRS field application possibility, this study planned to mix concrete and mortar generally used in ready-mixed concrete company and did basic experiment depending on a change of SRS content ratio and admixture. Based on the experiment result. It is judged that SRS admixture 2% is proper ratio when Given the intensity and length change. Also mass combination will conduct follow-up studies.

Engineering Properties of Bleeding Reduction of Concrete Using AE Water Reducing Agent for the Type of Bleeding Reduction (블리딩저감형 AE감수제를 사용한 콘크리트의 공학적 특성)

  • Han, Cheon-Goo;Hwang, Yin-Seong;Lee, Seung-Hoon;Kim, Gyu-Dong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.1
    • /
    • pp.133-140
    • /
    • 2004
  • This study is intended to investigate the properties of bleeding reduction of concrete using AE water reducing agent for the type of bleeding reduction with the replacement admixture. According to the results, when the adding ratio of AE water reducing agent for the type of bleeding reduction increases, a range of normal fluidity and aimed air content are satisfied, setting time is faster than that of normal AE water reducing agent. And bleeding amount decreases, bleeding speed is highest between 60 and 90 min, and sinking depth increases drastically in 50 min. When AE oater reducing agent for the type of bleeding reduction is added, compressive strength shows a slight variation by air content, but there is not a large influence by addition of AE water reducing agent for the type of bleeding reduction. Synthetically, it proves that AE water reducing agent for the type of bleeding reduction satisfies aimed air content in the range of normal slump and can reduce only bleeding without quality variation of compressive strength.

Effect of Emulsified Waste Oil on the Engineering Properties and Autogenous Shrinkage of the High Strength Concrete (유화처리된 폐식용유가 고강도 콘크리트의 공학적 특성 및 자기수축에 미치는 영향)

  • Han, Min-Cheol;Kim, Tae-Cheong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.62-69
    • /
    • 2012
  • This study investigates the engineering properties of the high strength concrete depending on dosages and types of shrinkage reduction agent. Test results showed that for the properties of fresh concrete, the addition of the conventional shrinkage reduction agent (SR) of 0.25% decreased slump flow up to 40% as compared with control concrete, whereas the addition of the emulsified waste cooking oil (EWCO) decreased slump flow of only 5% to 10%. Other properties of fresh concrete with the agents, namely air content, unit weight and setting time, were similar to the results of the control concrete. For the properties of hardened concrete, the compressive strength of the concrete with SR decreased at both early and later stage. However, the compressive strength of the concrete with EWCO was similar to the control concrete at early age, but decreased at later stage (up to 10% reduction at 28 days). For the effect of the agents on autogenous shrinkage of the concretes, the addition of EWCO decreased up to 33%, whereas that of SR decreased up to 29%. Hence, it can be said that the addition of EWCO in high strength concrete has an effect on reducing the autogenous shrinkage as compared with a conventional agent and only slight influence on the slump flow and air content of concrete. By taking all aspects of using EWCO, it is concluded that the optimum content of EWCO will be in the range of between 0.5% and 0.75%.

  • PDF