• Title/Summary/Keyword: Shrinkage Cavity

Search Result 80, Processing Time 0.025 seconds

Effects of mold temperature on the part dimension and surface quality of the injection molded cavity filter (금형온도가 Cavity Filter 성형품의 치수 및 외관품질에 미치는 영향에 관한 연구)

  • 김동학;김태완
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.3
    • /
    • pp.164-167
    • /
    • 2003
  • In this study, we developed the mold for the plastic cavity filter which is a kind of a wireless communication device. Since the cavity filter is made of aluminium, the cost of fabrication is high and the production rate is low. But we can produce plastic cavity filter part by injection molding process with the mold which was designed by our team. The dimension and surface quality of plastic cavity filter was investigated by varying the molding method (conventional and MmSH process) and two different types of resin(PC/ABS and ABS). In case of ABS part, the shrinkage of the inner partition walls was decreased when we adopted MmSH method. The weight of both ABS and PC/ABS parts increased and the surface roughness decreased with MmSH process.

  • PDF

A Study on Measurement of Shrinkage of Molded Plastics in a Microcellular Foaming Injection Molding Process (초미세 발포 사출 성형 공정에서 성형된 플라스틱의 수축률 측정에 관한 연구)

  • Hwang, Yun-Dong;Cha, Sung-Woon;Lee, Jung-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.621-626
    • /
    • 2001
  • Microcellular foaming process was developed at MIT in 1980's to save a quantity of raw materials and improve mechanical properties. There are many process variables in appling microcellular foaming process to the conventional injection molding process. Of all process variables, part dimension control and shrinkage are the most influential on the post molded dimension. The post molding dimensional change of thermoplastic resins is important to tool designers for predicting the specific difference of molded part vs. actual mold cavity. Generally, articles injection molded are smaller in size than the cavity; hence, the term shrinkage factor is used to define the allowance a designer specifies. It is important to consider the factors that influence molded part dimension. According to ASTM Designation: D 955, shrinkage from mold dimensions of molded plastics was measured. In injection molding, the difference between the dimensions of the mold and of the molded article produced therein from a given material may vary according to the design and operation of the mold. In this paper, shrinkage data of molded plastic parts was obtained. It can be an important information for designing optimum mold system in a microcellular foaming injection molding process.

  • PDF

Pressure distributions in the cavity in injection molding for various operational conditions (사출성형조건에 따른 캐비티의 압력분포)

  • Kim J. M.;Jun J. H.;Lyu M. Y.;Hwang H. S.;Lee J. W.;Lee S. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.214-219
    • /
    • 2005
  • Pressure distribution in the cavity during injection molding affects part quality. In this study pressure distributions in the runner, near gate in the cavity, and end of ail in the cavity have been measured using direct pressure sensors for various molding conditions. Molding conditions were injection speed, injection pressure, packing time from filing stage, and packing pressure. Through experiments it was realized that the packing time from filling stage and packing pressure are the dominant factors on the part quality such as part shrinkage. Experimental results have been compared with computer simulations.

  • PDF

Manufacturing technology of micro parts by powder injection molding (PIM기술을 이용한 마이크로 부품 성형기술)

  • Lee, W.S.;Ko, S.H.;Jang, J.M.;Kim, I.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.60-63
    • /
    • 2009
  • Manufacturing technologies of micro spur gear and micro mold by micro PIM were studied with stainless steel feedstock. For molding of gears, micro mold with gear cavity of 1.2 mm in diameter was produced by wire EDM. The proper injection pressure was selected to 70bar by observation and measuring of shapes and shrinkage of gears before/after sintering. For fabrication of micro mold, a tiny polymer gear was produced by injection into the mold. Then, 316L feedstock was again injected/compressed on the polymer gear and debinded together with polymer gear followed by sintering. As a result, another metal mold with gear cavity reduced to about 20% was fabricated and through repetition of this process chain, micro gear mold with cavity about below 800 um was finally obtained. In reduction of size by injection/compression molding, height of gear tooth was shrunk more and the effort for decrease of roughness of micro cavity were carried out ultrasonic polishing and as a result, the roughness in cavity decreased from 3-4 um to about 200 nm.

  • PDF

A COMPARATIVE STUDY ON THE COMPOSITE RESTORATION DESIGN AND PLACEMENT METHODS USING THREE DIMENSIONAL FINITE ELEMENT ANALYSIS (광중합 콤포짓트레진의 수복형태 및 방법에 관한 삼차원 유한요소분석법적 비교 연구)

  • Lee, Jung-Taek;Yim, Soon-Ho;Chang, Ik-Tae
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.36 no.1
    • /
    • pp.133-149
    • /
    • 1998
  • Clinical application of composite resin recently draw great concerns in dentistry. Especially due to advantages such as esthetics, adhesiveness, simple clinical procedures, various shapes and kinds of composite resins are widely being applied to prosthodontics, conservative dentistry, and orthodontics. But, clinical problems attributable to the polymerization shrinkage of composite resin have been proposed, and we have to regard clinical problems such as secondary caries, loss of restoration, fracture of the surrounding tooth structure, marginal discoloration, and tooth sensitivity, and many portions are remained to be overcome. Therefore, this study attempts to analyze stress distribution between resin and tooth structure which is generated during polymerization shrinkage of composite resin using three dimensional finite element method. Three dimensional finite element models with conventional box-shape cavity and erosion/abrasion type V-shape lesion cavity in upper central incisor were developed. These cavities were filled with four different types of placement techniques. (bulk filling, horizontal increment filling, oblique occlusal increment filling, oblique gingival increment filling) The stresses generated by polymerization shrinkage of composite resin were calculated. The results analyzed with three dimensional finite element method were as follows : 1. The increment filling technique showed the highest maximum normal stress in both conventional box-shape and V-shape cavities and showed a tendency to decrease after complete polymerization. 2. The bulk filling technique resulted in increased stresses during the curing process in both conventional box-shape and V-shape cavities and the highest maximum normal stress occurred after complete polymerization. 3. The bulk filling resulted in the lowest maximum normal stress in both box-shape and V-shape cavities 4. Regardless of placement method, in conventional box-shape cavity, the maximum normal stress increased in dentin floor, enamel, dentin sequence and in V-shape cavity, the maximum normal stress increased in enamel, dentin sequence.

  • PDF

Analysis of Cavity Pressure and Dimension of Molded Part According to V/P Switchover Position in Injection Molding

  • Cho, Jung Hwan;Kwon, Soon Yong;Roh, Hyung Jin;Cho, Sung Hwan;Kim, Su Yeon;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • v.52 no.4
    • /
    • pp.309-316
    • /
    • 2017
  • In injection molding, the quality of an injection molded product varies greatly depending on the molding conditions. Many researche studies have been conducted on the quality analysis of molded parts according to the molding conditions such as injection pressure, injection temperature, and packing pressure. However, there have not been many studies on the V/P switchover timing. It is known that when a large pressure is applied to a cavity in the packing phase, the cavity pressure is most affected by the packing pressure. In addition, depending on the position (timing) of the packing pressure, it can have a direct influence on quality based on the shrinkage and dimensions of the molded parts. In this study, the change in pressure profile in the cavity according to the V/P switchover position is confirmed. A CAE analysis program (Moldflow) was used to simulate and analyze two models using the PC and PBT materials. In order to compare these results with the actual injection molding results, injection molding was performed for each V/P switchover position, and the correlation between simulation and experiment, especially for the shrinkage of molded parts, was evaluated.

THE EFFECT OF ADHESIVE CURING TIMING ON THE DIRECTION OF POLYMERIZATION SHRINKAGE OF COMPOSITE RESIN (상아질 접착제의 중합 시간 조절에 따른 복합레진의 중합 수축 방향의 변화)

  • 배지현;오명환;김창근;손호현;엄정문;조병훈;권혁춘
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.4
    • /
    • pp.316-325
    • /
    • 2001
  • The purpose of this study was to evaluate the effect of adhesive curing timing on the direction of polymerization shrinkage of light-curing composite resin. In this study, the curing times of adhesive and composite resin were measured by differential scanning calorimeter(DSC). 28 extracted human molars were embedded in clear resin and box-type cavities were prepared. Based on DSC data, the experimental teeth were divided into 4 groups. Group 1: no bond; Group 2: late curing; Group 3: Intermediate curing; Group 4: Early curing. After treating with adhesive, the buccal cavities were filled with Z-100 hybrid composite resin and the lingual ones were filled with AEliteflo flowable composite resin. The depressions at the surface were measured by surface profilometer, then the specimens were embedded in clear resin and sectioned. Impressions were obtained and used to get epoxy resin replicas. The epoxy replicas were gold-coated and observed under SEM. Average Maximum Gap(AMG), Gap Proportion(GP), Average Marginal Index(AMI) were used to compare the shrinkage gap of each group. The results were statistically analyzed using the Kruskal-Wallis One Way ANOVA, Student-Newman-Keuls method. The results of this study were as follows. 1. Average Maximum Gap, Gap Proportion, Average Marginal Index and depression at the surface or Z-100 hybride composite resin were smaller than those of AEliteflo flowable composite resin(P<0.05). 2. When the bonding between composite resin and tooth structure was strong, the shrinkage gap was small, and depression at the surface was deep(P<0.05). 3. In the well-bonded group, light-curing composite resin shrank toward bonded cavity wall, not toward light source. The result suggested that the direction of polymerization shrinkage was affected by the quality of bonding in the dentin-resin interface. The strong was the bonding between composite resin and tooth structure, the smaller was the gap and the deeper was the depression at the surface. Then the flow to compensate the polymerization shrinkage proceeded from surface to bonded cavity wall.

  • PDF

Effects of Riser Design and Chemical Composition on the Formation of Shrinkage Cavity in Gray and Ductile Iron Castings

  • Yu, Sung-Kon
    • Journal of Korea Foundry Society
    • /
    • v.24 no.2
    • /
    • pp.101-107
    • /
    • 2004
  • 회주철 및 구상흑연주철에 있어서 압탕방안 및 합금원소가 수축결함의 생성에 미치는 영향을 연구하였다. 두 종류의 압탕방안으로 실린더형상의 계단상시편을 제조하였으며 회주철의 경우 5조성(ISO 150, 200, 250, 300, 350), 구상흑연주철의 경우 6조성(SG 10, 20, 30, 40, 50, 60)을 사용하였다. 회주철 및 구상흑연주칠 공히, 1차 압탕방안의 경우 액상수축에 의한 1차수축결함이 후육부의 표면에 발생하였으며 수축결함의 내면은 매끄러웠다. 회주철의 경우 응고수축에 의한 2차수축결함은 생성되지 않았으나 구상흑연주철의 경우 모든 시편의 내부열점에 2차수축결함이 발생하였고 그 내면은 거칠었다. 2차압탕방안의 경우 회주철의 모든 시편에서는 1차 및 2차수축결함이 발생되지 않았다. 그러나 구상흑연주철의 경우 탄화물 생성원소가 첨가된 SG 40, 50 및 60의 3조성에서 2차수축결함이 열점에 생성되었다. 견고한 ���V주형을 사용하였기 때문에 주형벽이동으로 인한 표면팽창은 어느 경우에도 관찰되지 않았다.

The Difference of the Degree of Crystallinity of Foamed Plastics Depending on the Pressure Gradient in Mold Cavity (금형 cavity 내의 압력 차이에 의한 발포사출품의 결정화도 차이)

  • 이동욱;차성운;현창훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1354-1357
    • /
    • 2003
  • Mold Analysis is crucial factors in the design of injection molding process. Since the qualify of products depends on filing, shrinkage and etc, the procedure of prediction through analysis in the design of injection molding process is needed. In many cases, this kind of analysis makes it possible to predict pressure pattern which determines the condition of injection molding process. Crystallinity is the factor that determines the shrinkage of products. The studies showed the factors that had been related to the degree of crystallinity, which were mostly Weight Reduction, mold temperature and melt temperature. Therefore, the objective of this study is to see the differences of the degree of crystallinity depending on the positions of foamed plastics. The procedure of this study is as the following. First, Simulate the pressure gradient in mold cavity that can produces specimen by using Moldflow. Secondly, produce specimen and measure the degree or crystallinity of each part of specimen by using XRD. Lastly, identify the sensitivity of conventional plastic and foamed plastic on pressure gradient by comparing the simulation and the results of measurement.

  • PDF

Application of Solidification Analysis considering Volumetric Contraction to Riser Design of Steel Castings (주강품 압탕 설계에 체적 수축을 고려한 응고해석의 적용)

  • Kim, Ji-Joon;Kim, Ki-Young;Choi, Jeong-Kil;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.15 no.5
    • /
    • pp.494-506
    • /
    • 1995
  • Test castings in plate, disc, and cubic shaped castings for 0.2wt.% carbon and stainless steel have been poured to examine the effects of the riser dimensions including riser neck on the casting soundness. Three empirical methods were chosen in risering of steel castings. A computer program of solidification analysis considering liquid and solidification contraction was developed to apply for riserdesign calculated by using their methods in plate, disc, and cubic shaped castings, and to calculate the position and dimension of shrinkage cavity in complex shaped casting. The potential of present method has been successfully demonstrated by comparing predicted cavity shapes with those obtained in a series of experimental castings. Three empirical methods can be used in a practical way to make a rapid estimation of tie minimum riser diameter, but they can not provide a criterion of casting soundness with shape and material on all occasions. The shape and position of shrinkage cavity can be successfully predicted both using the present method and using risering calculated by their methods regardless of the shape and cast material.

  • PDF