• Title/Summary/Keyword: Shrimp tail flip

Search Result 2, Processing Time 0.015 seconds

Analysis of tail flip of the target prawn at the time of penetrating mesh in water flow by tank experiments

  • KIM, Yonghae;GORDON, Malcolm S.
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.52 no.4
    • /
    • pp.308-317
    • /
    • 2016
  • The tail flip of the decapod shrimp is a main feature in escaping behavior from the mesh of the codend in the trawl. The characteristics of tail flip in target prawn was observed and analyzed in a water tunnel in respect of flow condition and mesh penetration by a high speed video camera (500 fps). The tail bending angle or bending time in static water was significantly different than in flow water (0.7 m/s) and resultantly the angular velocity in static water was significantly higher than in flow water when carapace was fixed condition. When escaping through vertical traverse net panel in water flow the relative moving angle and relative passing angle to flow direction during tail flip, it significantly decreases the number of shrimps escaping than the case of blocking shrimp. The bending angles of tail flip between net blocking and passing through mesh were not significantly different while the bending time of shrimp passing through mesh was significantly longer than when shrimp blocking on the net. Accordingly the angular velocity of passing through mesh was significantly slower than blocking on the net although the angular velocity of the tail flip was not significantly related with carapace length. The main feature of tail flip for mesh penetration was considered as smaller diagonal direction as moving and passing angle in relation to net panel as right angle to flow direction rather than the angular velocity of tail flip.

Penetrating behavior of target prawns (Sicyonia penicillata) contacting netting panels in an experimental water tunnel

  • KIM, Yonghae;GORDON, Malcolm S.
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.54 no.3
    • /
    • pp.193-203
    • /
    • 2018
  • Capture efficiencies of commercial shrimp trawls may improve if their designs took into better account behavioral responses of wild shrimp to approaching cod-end of the trawls. Here we report results of water tunnel-based experimental studies of responses of wild California target prawns to several different near-realistic netting configurations over a range of water velocities (0.3-0.7 m/s). Netting panels were oriented at parallel to water flows (FP) on the bottom of test section, vertical (VT) or diagonal sloping backward (DG), bottom to top. Behavioral responses were recorded by video camera and analyzed frame by frame. Measured responses included rates of penetrating through netting by behavioral features and tail-flip frequencies. Frequencies of prawn passing through the nets increased with flow speed for both orientations and were higher at given speeds for sloped nets. Other behavioral features (e.g., passage head-or tail-first) also varied significantly with water velocities and netting orientation. Interactions of penetrating rates between netting orientations and flow speeds also were significantly dependent, except for prawn size. Additional studies are needed of other shrimp species and at higher water velocities more similar to actual field operations using trawls to improve size selectivity.