• Title/Summary/Keyword: Shot-Peening

Search Result 186, Processing Time 0.026 seconds

A Study on the Effect of Compressive Residual Stress for Corrosion Property of SUP-9 Steel Using as Suspension Material (현가장치재 SUP-9강의 부식특성에 미치는 압축잔류응력의 영향에 관한 연구)

  • Ru Hyung-Ju;An Jae-pil;Park Keyung-dong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.7 s.238
    • /
    • pp.930-937
    • /
    • 2005
  • One of the useful technology for light-weightening of components required in the automobile and machine industry is to use of high strength materials. To improve material properties, carbonizing treatment, nitrifying treatment, and shot-peening method are representatively applied, However, the shot-peening method is generally used to remove the surface defect of steel and to improve the fatigue strength on surface. Benefits by shot peening are to make increase resistance against fatigue, stress corrosion cracking, fretting, galling, erosion and closing of pores. In this paper, investigated the effect of shot peening on the corrosion of SUP-9 steel immersed in $3.5\%$ NaCl solution and corrosion characteristics by the heat treatment during shot peening process. The immersion test was performed on the four kinds of specimens. Corrosion potential, polarization curve, residual stress and etc. were investigated from the experimental results.

The effect of compressive residual stresses of two-stage shot peening for fatigue strength of spring steel (스프링강의 피로강도에 미치는 2단 쇼트 피이닝에 의한 압축잔류응력의 영향)

  • 박경동;정찬기
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.71-79
    • /
    • 2001
  • Recently the steel parts used at automobiles are required to be used under high stress more than ever before in need of the weight down. To achieve this requirement of a high strength steel, it must be necessary to decrease inclusion content and surface defect as like decarburization, surface roughness etc.. In this study, the surface conditions are measured to know the influence on fatigue properties by two cases of shot peening of two-stage shot peening and single-stage shot peening. And for this study, three kinds of spring steel(JISG4081-SUP ,SAE 9254, DIN 50CrV4, ) are made. This study shows the outstanding improvement of fatigue properties at the case of two-stage shot peening in the rotary bending fatigue test and this is assumed to be from (1) Decreasing the surface roughness (2) Unchanging the surface hardness (3) Increasing the compressive residual stress But, results also show fatigue failures originated at inclusion near surface, and this inclusion type is turned out to be a alumina of high hardness.

  • PDF

The Effect of Compressive Residual Stresses of Two-stage Shot Peening far Fatigue life of Vehicle Spring Steel (차량용 스프링강의 피로수명에 미치는 2단 쇼트 피이닝에 의한 압축잔류응력의 영향)

  • 박경동;정찬기
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.185-192
    • /
    • 2003
  • Recently the steel parts used at automobiles are required to be used under high stress more than ever before in need of the weight down. To achieve this requirement of a high strength steel, it must be necessary to decrease inclusion content and surface defect as like decarburization, surface roughness etc.. In this study, the surface conditions are measured to Dow the influence on fatigue properties by two cases of shot peening of two-stage shot peening and single-stage shot peening. And for this study, three kinds of spring steel (JISG4081-SUP7, SAE 9254, DON 50CrV4) are made. This study shows the outstanding improvement of fatigue properties at the case of two-stage shot peening in the rotary bending fatigue test and this is assumed to be from (1) Decreasing the surface roughness (2) Unchanging the surface hardness (3) Increasing the compressive residual stress. But, results also show fatigue failures originated at inclusion near surface, and this inclusion type is turned out to be a alumina of hish hardness.

A Study on the Optimum Shot Peening Condition for Al7075-T6 (AL7075-T6의 최적 쇼트피닝 조건에 관한 연구)

  • Jeong,Seong-Gyun;Kim,Tae-Hyeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.7
    • /
    • pp.63-68
    • /
    • 2003
  • Shot peening process is most often used to improve the fatigue properties of metal parts, In order to achieve an optimum, repeatable, and reliable fatigue enhancement from the shot peening process, the important shot peening parameters must be optimized, In this paper, the optimum peening intensity(Almen intensity) condition is investigated by experiment. Rotary bending fatigue test has been adopted to investigate the effects of optimum peening on the fatigue characteristics, Experimental results show that the fatigue strength and fatigue life has been tremendously increased by optimum-peening treatment. However, the fatigue strength and fatigue life has been decreased by under or over peening.

Improvement of the Corrosion Fatigue Life of Metal Material by Shot Peening (쇼트피닝가공에 의한 금속재료의 부식피로수명 개선)

  • Nam Ji-Hun;Kou Dae-Lim;Lee Kook-Jin;Lee Dong-Sun;Cheong Seong-Kyun
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.716-721
    • /
    • 2004
  • Corrosion highly affects to reduce lifetime and performance of machinery metallic components. The effects of shot peening on the fatigue life of metal material under corrosive environment are investigated in this paper. Experimental results show that the fatigue limit of shot peened specimen increases about 52$\%$. That means the fatigue life of metallic components is highly extended by shot peening. The corrosion greatly reduces the fatigue strength depending on the corrosive condition from one week up to one year. In case of shot peened specimen, the corrosion does not reduce the fatigue strength and fatigue life up to six months. It means that shot peening has superior effectiveness to reduce the influence of corrosion to the metallic materials.

  • PDF

Evaluation on cavitation damage in sea water with shot peening stand-off distance for ALBC3 alloy (ALBC3 합금의 쇼트피닝 분사거리에 따른 해수 내 캐비테이션 손상 평가)

  • Han, Min-Su;Jang, Seok-Ki;Kim, Jong-Sin;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.239-244
    • /
    • 2013
  • Marine equipment exposed to harsh environments requires not only excellent corrosion resistance but also improvement of physical characteristics against natural material degradation. With growing interests in ocean energy resources, the higher reliability for marine equipment has become more important in terms of material characteristics. ALBC3 alloy represents excellent corrosion resistance and is widely used in corrosive environments. However, cavitation damage occurs frequently due to its poor durability in high flow rate of marine environment. In this research, shot peening technology was employed as a surface modification with shot peening stand-off distance to mitigate cavitation damage. The effects of shot peening on extent of cavitation damage and weight loss were evaluated for both shot peened and non-peened specimens. The results revealed that the application of shot peeing decreased cavitation damage for all experimental conditions in comparison with the non-peened specimens. The optimum stand-off distance was determined to be 10 cm, since more than 35 % of cavitation damage reduction was observed.

Finite Element Analysis for Prediction of Residual Stresses Induced by Shot Peening (쇼트피닝 잔류응력 예측을 위한 유한요소해석)

  • Kim, Cheol;Yang, Won-Ho;Sung, Ki-Deug;Ko, Myung-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.198-204
    • /
    • 2001
  • The shot peening is largely used for a surface treatment of metallic components where small spherical pellets called shots are blasted onto the surface with velocities up to 100 m/s. This treatment leads to improvement of fatigue behavior due to the developed compressive residual stresses, and so it has gained widespread acceptance I the automobile and aerospace industries. The residual stress profile on surface layer depends on the parameters of shot peening, which are, shot velocity, shot diameter, coverage, impact angle, material properties etc. and the method to confirm this profile is the measurement by X-ray diffractometer only. Despite the importance to automobile ad aerospace industries, little attention has been devoted to the accurate modelling of the process. In this paper, the simulation technique is applied to predict the magnitude ad distribution of the residual stress and plastic deformation caused by shot peening with the help of the finite element analysis.

  • PDF

The Finite Element Analysis for Prediction of Residual Stresses Induced by Shot Peening (쇼트피닝 잔류응력 예측을 위한 유한요소해석)

  • Kim, Cheol;Yang, Won-Ho;Sung, Ki-Deug;Cho, Myoung-Rae;Ko, Myung-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.218-223
    • /
    • 2000
  • The shot peening is largely used for a surface treatment in which small spherical parts called shots are blasted on a surface of a metallic components with velocities up to 100m/s. This treatment leads to an improvement of fatigue behavior due to the developed compressive residual stresses, and so it has gained widespread acceptance in the automobile and aerospace industries. The residual stress profile on surface layer depends on the parameters of shot peening, which are, shot velocity, shot diameter, coverage, impact angle, material properties etc. and the method to confirm this profile is only measurement by X-ray diffractometer. Despite its importance to automobile and aerospace industries, little attention has been devoted to the accurate modelling of the process. In this paper, the simulation technique is applied to predict the magnitude and distribution of the residual stress and plastic deformation caused by shot peening with the help of the finite element analysis.

  • PDF

A 2D FE Model for a Unique Residual Stress in Single Shot Impact (단일 숏 충돌에서의 잔류응력 유일해를 위한 2차원 유한요소해석 모델)

  • Kim, Tae-Hyung;Lee, Hyung-Yil
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.183-188
    • /
    • 2007
  • In this paper, we propose a 2D-FE model in single impact with combined physical factors to obtain a unique residual stress by shot peening. Applied physical parameters include elastic-plastic deformation of shot ball, material damping coefficients, strain rate, dynamic friction coefficients. Single impact FE model consists of 2D axisymmetric elements. The FE model with combined factors showed converged and unique distributions of surface stress, maximum compressive residual stress and deformation depth. Further, in contrast to the FE models with rigid shot and elastic deformable shot, FE model with plastic deformable shot produces residual stresses very close to experimental solutions by X-ray diffraction. We therefore validated the 2D FE model with combined peeing factors and plastic deformable shot. This FE model will be a base of the 3D FE model for residual stresses by multi-impact shot peening.

  • PDF

Effects of shot peening on fatigue strength for high strength (고강도화를 위한 쇼트피닝이 피로강도에 미치는 영향)

  • 이승호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.322-327
    • /
    • 1997
  • This paper investigates the effects of shot peening on mechanical properties of SAE 9254, which is a spring steel used for the suspension system of automobiles. Rotary Bending Fatigue test is accomplished and the results are summarized as fellows : 1. The tensile strength and the hardness do not change so much. 2. The layer of highly residual stress is obtained by multi-stage shot peening. 3. The fatigue strength seems to be improved by residual stress. 4. The fatigue strength of un-peened and multistage shot peened material are 425 MPa and 756 MPa, respectively.

  • PDF